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1 Introduction 
The purpose of the project "Danish Seine: Computer based Development and Operation" (MAROFF-2 
project no. 225193 / FHF project no. 900861), funded by Research Council of Norway (RCN) and 
Norwegian Seafood Research Fund (FHF), is to develop software tools to investigate Danish Seine fishing. 
These tools cover both the physical behaviour of the Danish Seine gear during the fishing process and the 
selectivity inside the Seine net. The project is led by Sintef Fisheries and Aquaculture (SFH), and is carried 
out in collaboration with the Norwegian College of Fishery Science at the University in Tromsø (UiT). To 
provide expert knowledge about physical modelling of fishing gear behaviour, simulation of selectivity, 
Danish Seine fishing and Seining selectivity to the development team in the project an expert group has been 
created. Three international specialists, covering different scientific disciplines and fields of experience of 
importance for the development team participate in the expert group. Transfer of knowledge from these 
international experts to the members of the development team in the project has during the period March 
2013 to May 2014 been provided through: i) Skype and telephone meetings between one expert and one 
member of the development team; ii) mail correspondence; iii) a workshop between all the members of the 
development team and the experts (May 2014). 
The purpose of this report is to document which knowledge have been transferred from the experts to the 
project and to outline how it has been achieved. The main parts of the report are therefore in a 
comprehensive appendix indexed A1 to A17 which contain the information transferred in the form of data, 
documents, presentations, and presentations discussed. The report then outlines how the transfer of 
knowledge has been obtained while referring to the appendices. 
  

2 Description of the expert group 
Three experts from internal research institutes participate in the expert group. The role of these experts is to 
transfer knowledge to the project which will ensure that the development inside the project is based on 
knowledge which is at the international forefront. 
 
IFREMER in France participates with Dr. Daniel Priour. He is regarded an international expert in modelling 
of netting behaviour in towed fishing gears and has recently initiated national research in France regarding 
simulation of Danish Seine behaviour. 
 
Fisheries Research Service at the Marine Laboratory, Aberdeen, Scotland (FRS) participates through Dr. 
Barry O' Neill. He has expertise in hydrodynamics, modelling of netting behaviour in towed fishing gears, 
physical modelling of the seabed impact by active fishing gears, size selectivity, fish behaviour and 
simulation of fishing gear selectivity. Further, Dr. O' Neill has experiences and access to experimental data 
regarding size selectivity in Seine fishing. 
 
The Johann Heinrich von Thünen Institute (TI) is represented by Dr. Daniel Stepputtis. He has his main 
expertise in conducting full scale sea trials measuring various biological parameters, gear behaviour during 
fishing and is in charge of a team conducting selectivity experiments. 
Experimental data and underwater observations from Dr. Stepputtis' team are used in the development and 
verification processes for the simulation models in the project. Specifically, test of some aspects of the 
codend size selectivity simulation model is possible through this collaboration. 

3 Description of the projects development team 
To implement the simulations tools being developed in the project a software development team with three 
members from SFH has been setup. They are the one who has the task of implementing the different models 
into the computer code which form the software tools being developed in the project. The main flow of 
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information from the group of experts is therefore to be directed towards this development team. The 
software development team consists of: 

- Dr. Bent Herrmann who is responsible for development of the seine selectivity models in the project. 
He further acts as project manager for the project. 

- Dr. Karl Gunnar Aarsæther who works on the physical modelling of gear behaviour with main focus 
on implementing the core model. 

- Dr. Nina A.H. Madsen who works on the physical modelling of gear behaviour with main focus on 
the user interface implementation.  

Besides these three members specific parts of the models will be implemented by other SFH-staff with 
special and specific know how.  
 
To support the software development team with basic knowledge about Norwegian fishery and in particular 
Danish seine fishing MSc. Roger B. Larsen from UiT is part of the project team. Further are these activities 
supplemented by Dr. Manu Sistiaga and Dr. Eduardo Grimaldo, both from SFH. 
 

4 Transfer of knowledge from Dr. Priour prior to the expert workshop 
During several telephone meetings and Skype meetings in the period March 2013 to April 2014 between Dr. 
Herrmann and Dr. Priour have various technical subjects been discussed regarding the application of finite 
elements methods to simulate the physical behaviour of active fishing gears like trawls and seines. Key 
subjects covered in these discussions have included: 

- Use of 2D triangular elements to model the physical behaviour of diamond mesh, square mesh and 
hexagonal mesh netting. 

- Application of different drag models with specific focus on problems with realistic modelling when 
small angles of attack occur between netting and the current. 

- Application of the Newton-Raphson method versus the Newmark's method in the estimation 
algorithm. 

- Application of different types of convergence criteria's to stop the estimation algorithm. 
- Models for the interaction between fishing gear and seabed. 
- Temporary use of additional model stiffness by adding a virtual contribution to the diagonal in the 

stiffness matrix for the model to mitigate matrix singularity problems during estimations. 
- Use of stepwise model refinement in estimation as method to reduce overall model estimation time. 
- Strategies for acquisition of experimental data to validate the physical behaviour of different parts of 

the Danish Seine fishing gear.  
 
 Many of the different subjects addressed in these discussions with Priour are covered by the descriptions in 
[A7].   

5 Transfer of knowledge from Dr. O'Neill prior to the expert workshop 
Telephone and Skype meetings between Dr. O'Neill and Dr. Herrmann have been conducted in the period 
March 2013 and April 2014. Key subjects discussed have covered: 

- Methods for comparing codend size selectivity in Danish/ Scottish Seines and demersal trawls. 
- Simulation of codend selectivity 
- Modelling of fish herding in active fishing gears like Danish seines and demersal trawls. 

 
Some information is described in [A8] 
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6 Transfer of knowledge from Dr. Stepputtis prior to the expert workshop 
Dr. Herrmann have in the initial part of the project (March 2013 – February 2014) had telephone meetings 
with Dr. Stepputtis aiming at identifying German collected experimental codend selectivity data which might 
have relevance for the current project. This was concentrated around codends made of square mesh netting 
and codends where the selectivity mainly would be attributable to the use of square mesh panels. The species 
in focus was cod. Some information is documented in [A9]. 
The discussions with Dr. Stepputtis also aimed at identifying underwater recordings which could learn the 
project something about fish escape behaviour in relation to square mesh panels and codends. [A11] show a 
few examples of screen dumps. 
Another subject discussed was experimental method and data to assess fish herding efficiency of cables 
/warps when dragged over the seabed during fishing with active gears like trawls and Danish seines. A 
German experimental dataset will be applied as a basis to model flatfish herding efficiency.     

7 Description of activities during the expert workshop 
It was found to be practical to coordinate the expert workshop in the project with the venue of the ICES 
working group for Fisheries Technology and Fish Behaviour (ICES WGFTFB) 2014 annual meeting 
because: i) the project had to report to ICES WGFTFB as part of the scientific dissemination activities in the 
project; ii) it would provide the platform to exchange the ideas with national and international scientists not 
being part of the expert group; iii) it would be easier to coordinate the participation of the expert group 
members; iv) further it would provide the chance to introduce some of the younger members of the 
development team to the international scientific environment on Fishing gear technology around the ICES 
WGFTFB. The expert workshop was therefore conducted in the period May 4th – 9th, 2014 in parallel with 
ICES WGFTFB in New Bedford, MA, US. The workshop activities are described in the subsequent 
subsections. 

7.1 Meeting with Dr. Benoit Vincent 
May 6th did Dr. Madsen, Dr. Aarsæther and Dr. Herrmann meet with Dr. Vincent from France to discuss 
simulations modelling of the physical behaviour of Danish seines. Dr. Vincent is the developer of the 
internationally recognized commercial software Dynamit (http://wwz.ifremer.fr/dynamit) which simulates 
the physical behaviour of trawls. Parts of the discussion with Dr. Vincent was rather technical with one of 
the subjects being the use of different convergence criteria's in the simulation of dynamic fishing gear 
behaviour. Furthermore Dr. Vincent informed that he is going to build a simulation model for the physical 
behaviour of Danish seines. In this context it was agreed to share ideas and information. Dr. Vincent also 
informed that some of his colleagues are going to work with size selectivity in Danish Seine netting. That 
work was going to be coordinated by MSc Pascal Laurent who will be contacted to investigate potential 
collaborations with regarding the size selectivity part of the project.      

7.2 Meeting with Dr. Antonello Sala 
May 8th did Bent Herrmann meet with Dr. Sala from CNR in Italy to discuss the project. The background for 
the meeting was that Dr. Sala expressed interest in the project and potentially would consider national 
research activities on the Danish seine fishing method. In this context he was interested in a future 
collaboration. It was agreed to further investigate the possibilities for a future collaboration.  

7.3 Meeting with Dr. Priour 
On the May 8th a two and a half hour Skype meeting was held with Dr. Priour with participation of Dr. 
Madsen, Dr. Aarsæther and Dr. Herrmann from the project group. This had to be conducted as a Skype 
meeting since Dr. Priour few weeks before the planned workshop activities was prevented to travel to the 
workshop. The purpose of the meeting was mainly to let Dr. Priour give lectures in his long standing 
experience in modelling of physical behaviour of active fishing gears including Danish Seines. It was also a 
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main objective of this meeting to introduce the younger members of the development team in the project to 
Dr. Priour with the purpose to enable direct collaboration in the later stages of the project.    
 
One of the key subjects in the lectures by Priour was the application of the finite element method to model 
the physical behaviour of active fishing gears. Dr. Priour is considered an internationally leading scientist. 
Dr. Priour has developed an estimation tool FEMNET which can predict the physical behaviour of active 
fishing gears like trawls and Danish seines. Priour introduced the basic ideas of the finite element method 
and showed a few very simple examples [A1] on how to estimate the equilibrium state for simple systems 
model by the finite element method and by applying the Newton Raphson method. He continued by 
explaining how triangular elements can be applied to model netting when this is considered as a 3D surface. 
He showed how to derive the stiffness matrix for the triangular element [A1] and [A5]. Priour explained how 
he mitigates singularity or near-singularity in the stiffness matrix by use of temporal added stiffness to the 
diagonal elements in the matrix.    
 
Dr. Priour explained about the national French project he is heading regarding Danish seine fishing [A3]. He 
did explain how he had adopted his FEMNET estimation tool to simulate the Danish seine fishing process 
and showed an example of the estimated physical behaviour [A2]. It was clear from this part of the lecture 
that the knowledge of Dr. Priour can be very valuable to this project. 
 
Further Dr. Priour did lecture on the very recent sea trials which were carried out April 2014 in the French 
project. The purpose of those sea trials was to provide experimental data on the physical behaviour of the 
Danish seine gear during fishing operations which could be applied to validate/adjust the simulation model 
[A4]. Besides given a lecture on the data collected Dr. Priour also provided an access to the French data 
which will enable a potential the use of these data in the model validation work to be carried out in the 
current project both on qualitative and quantitative level.      

7.4 Group Meeting 
A four hour workshop meeting did take place May 7th, 2014 in New Bedford. This meeting had participation 
by: Dr. O'Neill, Dr. Stepputtis, Dr. Grimaldo, MSc. Larsen, Dr. Aarsæther, Dr. Madsen and Dr. Herrmann. 
 
Dr. O'Neill presented Scottish codends selectivity data where results from Seining were compared to from 
demersal trawling [A8]. The Scottish-based results, for mainly haddock, did not show significant difference 
from those obtained from trawling. Confidence limits where however wide for the seining results and the 
validity of the model with the trawls results were based on can be questioned. Potential availability of older 
Scottish seining codend selectivity was also discussed and it was agreed to investigate this further to see if 
other data which could be of value for the project should exist. 
 
Dr. Stepputtis presented codend selectivity data collected for cod during German sea trials with trawls [A9]. 
These codend selectivity data involved different codends which has a square mesh panel integrated and a full 
square mesh codend (120 mm). Even through this data was from bottom trawling and not seining, they were 
considered to be relevant for the project to learn something about square mesh selectivity of cod. The results 
demonstrated significant difference in size selectivity of cod between when the codend only partly is built of 
square meshes compared to when it is fully built of square meshes. In the discussion it came up how this 
demonstrate the relevance of the specific square mesh codend designs applied in some of the Norwegian 
Danish seine fishing. The results have relevance for the codend size selection simulator of the project. 
Further Dr. Stepputtis gave a presentation on a study on factors which affects the codend square mesh release 
efficiency in codends [A10]. In addition Dr. Stepputtis showed several video clips demonstrating the 
behaviour of cod and other roundfish species when inside a fishing gear and in particular the behaviour in 
vicinity of codend square meshes. A few still pictures are shown in [A11]. 
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MSc. Larsen was showing video clips demonstrating the different operational steps in Norwegian Danish 
seine fishing. The material and the discussion on it provided information with was relevant to consider when 
designing the user-interface for the simulation tool regarding which facilities there needed to be available. 
Further MSc. Larsen did make a presentation covering different technical aspects on how Danish Seine 
fishing is carried out in Norwegian fishery [A12]. The information presented and discussed are relevant for 
the design options in the tools being developed and for the selection of case designs during the development 
stages of the project. 
Some historical Danish seine selectivity work which MSc. Larsen has been involved in was presented and 
discussed in the meeting. This information is of key importance for the development of the selectivity 
simulator in the project. Some of the results of the work MSc. Larsen has been involved in are described in 
[A13] and [A14].    
 
Dr. Grimaldo presented several very recent underwater video clips from Norwegian Danish Seine fishing. 
These video clips provide valuable information about when during the Danish seine fishing process cod and 
haddock escape from the seine. Further these underwater recordings seem to be able to provide detailed 
information for the selectivity simulator regarding which of the different mesh distortions model that should 
be considered. These different models are outlined and applied in [A17]. It was discussed how this could be 
achieved and what additional information that would be relevant to collect for the benefit of this project.   
 
Based on Dr. O'Neill expertise regarding modelling of interaction between fishing gear elements and the 
seabed there was a discussion on how best to model the interaction between seine ropes and the seabed in the 
simulation tools. An important part would here be to obtain realistic values for the model parameters. It was 
discussed whether parts of the work Dr. O'Neill presented in the WGFTFB-meeting could provide some 
information [A15].         

7.5 Activities within the WGFTFB meeting 
Inside the WGFTFB meeting did Dr. Madsen give a presentation about the project with a focus on the 
physical behaviour of the seine ropes [A16]. One purpose of this presentation was to provide a broader 
international collaboration around the current project and feed-back from a large group of scientists. The 
presentation did lead to some discussion about the differences and similarities between the different variants 
seining fishing including what could be defined as Danish seining and Scottish seining.   
 
Also inside the WGFTFB meeting did Dr. Herrmann give a presentation with the title Understanding and 
predicting size selection of cod (Gadus morhua) in square-mesh codends for Danish Seining: a simulation-
based approach. The purpose was here to get some response on the work being conducted in the project 
regarding simulation of size selectivity [A17]. Member, MSc. Thomas Moth Poulsen (FAO), of WGFTFB 
responded by stating that some experimental data might be available which could potentially be of interest 
for the project. This will be investigated further. Further did Dr. Michael Breen from IMR Norway express 
interest in potentially applying the model in the work of another ICES working group.    
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Appendix A1 
Finite Element Method for netting 
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Appendix A2 
Danish Seine National project ENERSENNE 
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Appendix A3 
Danish Seine National project ENERSENNE Introduction 



ENERSENNE national project

Daniel PRIOUR

6 march 2014

introduction

The main objective of the project is to estimate the energy requested for the fishing technique of the 
Danish seine.

Sensors

Sensors have been largely completed during the week of October 21 to 25, 2013 . This arrangement 
will be finalized over the coming weeks. The following figures were taken on October 25 .

Figure 1: Electrical cabinet for sensors .



Figure 2 : Torsiometer (blue ) attached to the propeller shaft .

Figure 3: Control panel  including consumption.

Trawl

The trawl was carried out by fishermen.



Figure 4: Design of the trawl net (blue) and cables (red) .

Modeling

The modeling the hauling is completed . In the following figure which represents the hauling, 2 
phases were modeled : a first from 0s to 2000s when the boat is fixed and the hauling speed of the 
main cable is 1m / s and a second phase when the hauling speed is still 1m / s and the towing speed 
is also 1m / s.

Between 0 and 2000s , it should be noted that the power required to haul the main cable (blue 
curve) is the sum of the drag on the bottom ( red curve ) of the hydrodynamic drag of the main 
cable and other cables ( yellow curve) and the drag of the trawl net (green curve) . The power 
consumed by the hauling rises to 15KW during this period.

Between 2000s and 3000s , the boat goes ahead and it can be noted the large increase in drag net 
(green curve) . Here the power needed to tow the boat is represented by garnet curve. This rises to 
power 25KW .

We recall that the  propulsion efficiency of fishing boats is around 10% , ie the power consumption 
of fuel should be in the range of 400KW (15 +25 KW divided by 10 %) or fuel consumption 40l / h. 
Sea trials will adjust the model and get results consumption closer to reality.



Figure 5: Powers from the model, for winches ( blue), towing the boat ( garnet ) , drag on the 
bottom ( red), hydrodynamic drag cables  (yellow) and the hydrodynamic drag of the net ( green) . 
The boat is fixed until 2000s after it moves at 1m / s. Hauling speed is 1m / s.



 

 

 

Appendix A4 
Danish Seine National project ENERSENNE Test at sea 
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Appendix A5 
Netting modeling by Triangular elements 
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Appendix A6 
Drag of cables on the sea bottom 
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2 CHAPTER 1. FINITE ELEMENT METHOD

1.1 Principle

The �nite element method is a method that, at �rst, approximates the characteristics of a global
structure by dividing it into smaller substructures called �nite elements. These approximations,
in the present case, are performed to estimate e�orts on the vertices of these elements. These
e�orts depend on the position of the vertices of �nite elements.

In a second step, these elements are assembled to reconstruct the overall structure and thus
obtain the e�orts on this structure. These e�orts depend on the overall position of the vertices
of the elements.

In a third step, the position of the vertices that give a zero overall e�ort is calculated. This
position corresponds to the equilibrium position and therefore to the expected shape of the overall
structure.

Field of numerical points

A �eld of nodes on the structure to be studied is �rst created. This �eld of numerical nodes is
created so that there are many points in areas of high strain gradient. These nodes serve as the
basis for creating �nite elements.

The user is often in a position where he does not know a priori which areas are with high
deformation gradients. The equilibrium positions are calculated successively, re�ning by adding
nodes in areas with steep gradients and removing nodes in areas with low gradients.

Finite elements

Finite elements are created on this �eld of nodes. These �nite elements, in the case of our model,
are of several types, depending on whether they are dedicated to cables, bars or nets.

Triangular elements are used for nets (Figure 1.1), since the net is a surface. It seems easier
to use the simplest surface, namely, the triangle. The curvature of the net can be represented
using several triangular elements. Bar elements are used for cables (Figure 1.2).

1.2 A simple example

The following simple example shows the principle of splitting a global structure into several �nite
elements. A circle with a diameter of 1m has a perimeter of π (2πR). To assess this perimeter
by the �nite element approach, the circle is divided into n identical parts (Figure 1.3). The
perimeter is the sum of the length of each circle arc. The length of the arc can be approximated
by the circle cord. Each cord has a length of 2Rsin(α2 ).

The perimeter of the circle can be assessed by n times each cord length. Figure 1.4 shows the
evaluation accuracy of the perimeter in function of the number of sectors for the approximation.
The larger the number of elements, the greater the accuracy.

In other words, a parameter (here the perimeter) can be assessed by dividing the problem
into �nite elements (sectors) to be able to make acceptable approximations (the arc length
approximated by the cord length). The parameter is �nally assessed by rebuilding all the �nite
elements (sum of cord lengths). The principle of the �nite element method is to discretize
a structure in small (�nite) elements to make acceptable approximations in each element and
rebuild all the �nite elements for assessing parameters on the structure.
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(a) (b)

Figure 1.1: The diamond mesh netting (a) is decomposed into triangular elements (b). The ap-
proximation in each triangle is that twines are parallel and therefore have the same deformation,
and that the twines are elastic (chapter 3 page 27).

(a) (b)

Figure 1.2: The cable (a) is decomposed into bars elements (b). The approximation in each bar
is that bars are straight and elastic (chapter 4 page 71).

1.3 Nodes position, forces on nodes, and sti�ness matrix

In case the relationship between e�orts on nodes (vertices of the elements) and their position is
established, F(X) is known:
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Figure 1.3: Polygon of n cords inside the circle. The length of each cord is 2 R sin(α/2). The
circle perimeter is assessed by n times each cord length.

Figure 1.4: Perimeter of the polygon (dots) in function of the number of cords (n) compared
with the perimeter of the circle (line). The cross corresponds to the cords in Figure 1.3.

F: force on the nodes (N),

X: node position (m).

The objective of the method is to estimate the equilibrium position (Xfinal), that is to say,
such that

F(Xfinal) = 0

The Newton-Raphson method is generally used to obtain this position (Xfinal) from an initial
unbalanced position (Xinitial). This method iteratively calculates the position at equilibrium.
This method relies on the de�nition of the following derivative:
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F ′(X) =
F(X+ h)− F(X)

h

F ′: derived e�orts with respect to position (N/m),
h: nodes displacement (m).

The displacement h is sought if X is not the equilibrium position and such that X+ h is in
equilibrium. Under these conditions:

F(X+ h) = 0
The previous equation of the derivative gives

h =
F(X)

−F ′(X)

The term −F ′(X) is called the sti�ness matrix of the structure. Obviously h can be large,
which means that the de�nition of the derivative is not completely respected. An iterative
calculation is required:

Xk+1 = Xk +
F(Xk)

−F ′(Xk)

k: iteration.
Starting from a position Xk, F(Xk) and −F ′(Xk) are calculated, then the displacement hk is

deducted and then the next positionXk+1. The iterative calculation is stopped when convergence
is achieved, for example when the force F(Xk) converges to 0.
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1.4 Local and global forces and sti�ness

In the chapters 3, 4 and 5 the forces and the sti�ness are described in local terms.

As mentionned earlier, the structure is split into �nite elements in which forces and sti�ness
are calculated locally. That gives local forces f and local sti�ness k. For example in case of
element involving four coordinates, they are as in following:

f =


a
b
c
d



k =


e f g h
i j k l
m n o p
q r s t


To reassemble the �nite elements in the global structure, the local forces and the local sti�ness

have to be added to the global ones (F, K).

For example, if f and k de�ne the force and the sti�ness on an element that involves node
components 3, 4, 7, and 8, taking this element into account in the global structure would mean
that the local force f and sti�ness k have to be added to the global force F and sti�ness K, as
in the following:

F(3) = F(3) + a

F(4) = F(4) + b

F(7) = F(7) + c

F(8) = F(8) + d

K(3, 3) = K(3, 3) + e K(3, 4) = K(3, 4) + f K(3, 7) = K(3, 7) + g K(3, 8) = K(3, 8) + h
K(4, 3) = K(4, 3) + i K(4, 4) = K(4, 4) + j K(4, 7) = K(4, 7) + k K(4, 8) = K(4, 8) + l
K(7, 3) = K(7, 3) +m K(7, 4) = K(7, 4) + n K(7, 7) = K(3, 7) + o K(7, 8) = K(7, 8) + p
K(8, 3) = K(8, 3) + q K(8, 4) = K(8, 4) + r K(8, 7) = K(8, 7) + s K(8, 8) = K(8, 8) + t

In other words:

F =



·
·
·+ a
·+ b
·
·
·+ c
·+ d
·
·
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K =



· · · · · · · · · ·
· · · · · · · · · ·
· · ·+ e ·+ f · · ·+ g ·+ h · ·
· · ·+ i ·+ j · · ·+ k ·+ l · ·
· · · · · · · · · ·
· · · · · · · · · ·
· · ·+m ·+ n · · ·+ o ·+ p · ·
· · ·+ q ·+ r · · ·+ s ·+ t · ·
· · · · · · · · · ·
· · · · · · · · · ·
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1.5 Symmetry

In the case of symmetrical structures in a symmetrical environment it could be advantageous to
use this symmetry to reduce the node number and therefore the computation times.

Figure 1.5 shows a simple bar with a symmetry plane. The plane of symmetry is OY Z and
only the node of components a, b, and c, is on the plane of symmetry.

The calculation of force vector on the bar P regardless of the symmetry will give a force such
as (cf. Figure 1.5):

F =

Fa
Fb
Fc
Fd
Fe
Ff

The sti�ness matrix would be:

K =

Kaa Kab Kac Kad Kae Kaf

Kba Kbb Kbc Kbd Kbe Kbf

Kca Kcb Kcc Kcd Kce Kcf

Kda Kdb Kdc Kdd Kde Kdf

Kea Keb Kec Ked Kee Kef

Kfa Kfb Kfc Kfd Kfe Kff

In this case the ranking of the node coordinates is a, b, c, d, e, f .

Figure 1.5: The bar P has a node (a, b, c) on the symmetry plane. The other node (d, e, f) is
outside the symmetry plane. The symmetric bar is Q.

The calculation of the total force vector on the bar taking into account the symmetry will
give a force such as:
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F =

Fa − Fa
Fb + Fb
Fc + Fc
Fd + 0
Fe + 0
Ff + 0

The sti�ness matrix would be:

K =

Kaa +Kaa Kab −Kab Kac −Kac Kad Kae Kaf

Kba −Kba Kbb +Kbb Kbc +Kbc Kbd Kbe Kbf

Kca −Kca Kcb +Kcb Kcc +Kcc Kcd Kce Kcf

Kda Kdb Kdc Kdd Kde Kdf

Kea Keb Kec Ked Kee Kef

Kfa Kfb Kfc Kfd Kfe Kff

That gives for a symmetry plane OXY passing by the node of coordinates a, b, c:

F =

0
2.Fb
2.Fc
Fd
Fe
Ff

K =

2.Kaa 0 0 Kad Kae Kaf

0 2.Kbb 2.Kbc Kbd Kbe Kbf

0 2.Kcb 2.Kcc Kcd Kce Kcf

Kda Kdb Kdc Kdd Kde Kdf

Kea Keb Kec Ked Kee Kef

Kfa Kfb Kfc Kfd Kfe Kff

That gives for a symmetry plane OY Z passing by the node of coordinates a, b, c:

F =

2.Fa
0

2.Fc
Fd
Fe
Ff

K =

2.Kaa 0 2.Kac Kad Kae Kaf

0 2.Kbb 0 Kbd Kbe Kbf

2.Kbc 0 2.Kcc Kcd Kce Kcf

Kda Kdb Kdc Kdd Kde Kdf

Kea Keb Kec Ked Kee Kef

Kfa Kfb Kfc Kfd Kfe Kff

That gives for a symmetry plane OZX passing by the node of coordinates a, b, c:
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F =

2.Fa
2.Fb

0
Fd
Fe
Ff

K =

2.Kaa 2.Kab 0 Kad Kae Kaf

2.Kba 2.Kbb 0 Kbd Kbe Kbf

0 0 2.Kcc Kcd Kce Kcf

Kda Kdb Kdc Kdd Kde Kdf

Kea Keb Kec Ked Kee Kef

Kfa Kfb Kfc Kfd Kfe Kff
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1.6 Boundary conditions

There are two kinds of boundary conditions: the mechanical and the geometric.
The mechanical boundary conditions are de�ned through forces on the structure. Such bound-

ary conditions could be the e�ect of the sea bed; for example, a mooring chain lands on the
bottom. This speci�c case is described in section 5.2 (page 89).

The geometric boundary conditions consist here in displacement boundary conditions; for
example, an anchor in the sea bed could be taken into account by a null displacement, or a
boat towing a gear could be de�ned with a null displacement in moving water. These geometric
conditions are actually the conditions discussed in this section.

A null displacement for node coordinate c could be taken into account by modifying the force
and the sti�ness matrix. Generally speaking, the force and the matrix sti�ness are such as:

F =

Fa
Fb
Fc
Fd
Fe
Ff

K =

Kaa Kab Kac Kad Kae Kaf

Kba Kbb Kbc Kbd Kbe Kbf

Kca Kcb Kcc Kcd Kce Kcf

Kda Kdb Kdc Kdd Kde Kdf

Kea Keb Kec Ked Kee Kef

Kfa Kfb Kfc Kfd Kfe Kff

When the null displacement for node coordinate c is taken into account, the force and the
sti�ness matrix become:

F =

Fa
Fb
0
Fd
Fe
Ff

K =

Kaa Kab 0 Kad Kae Kaf

Kba Kbb 0 Kbd Kbe Kbf

0 0 1 0 0 0
Kda Kdb 0 Kdd Kde Kdf

Kea Keb 0 Ked Kee Kef

Kfa Kfb 0 Kfd Kfe Kff

These modi�cations of force and sti�ness matrix ensure that the displacement of coordinate
c is null.
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2.1 Newton-Raphson method

Finite element methods generally use the Newton-Raphson method (Deu�hard 2004) for the
calculation of the equilibrium position of a mechanical structure. The equilibrium position
corresponds to that position of the structure in which the sum of forces equals 0. In what
follows a few simple examples are given to explain the method under three cases: one dimension,
two dimensions and several dimensions.

2.1.1 One dimension

A spring (Figure 2.1) equilibrium is reached when the weight is equilibrated by the spring force.
At this position the sum of forces equals 0. This position can be calculated using the Newton-
Raphson method. In this example there is just one dimension: the vertical position (x) of the
mass relatively to the spring �xation which also equals the length of the spring.

Figure 2.1: The equilibrium of the spring is due to the mass weight and the spring force.

The spring equilibrium is calculated by writing the force on the mass: the weight is −Mg
(N), and the force of the spring is +K x−l0

l0
(N).

With
M : mass (kg),
g: acceleration of gravity (m/s2),
K: spring sti�ness (N),
x: position of the mass along the spring axis relative to the �xed point of the spring (m),
x: length of the stretched spring (m).

In this example the sti�ness is not constant in order to give a clearer explanation of the
Newton-Raphson method. K is equals to Ax. That means that longer the spring is, the sti�er
it is.

The sum of forces on the mass (curve on �gure 2.2) is

F (x) = K
x− l0
l0
−Mg

or, following the previous relations,

F (x) = Ax
x− l0
l0
−Mg
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Figure 2.2: Sum of forces on the mass function of spring length. Three Newton-Raphson itera-
tions starting at x = 2.8m are displayed. The vector tangent at x0 is shown.

Obviously at the equilibrium F (x) = 0. It is clear that this simple equation has an analytical
solution, which is

x =

√
l0A (4 gM + l0A) + l0A

2A

The Newton-Raphson method could be used to �nd the length of the spring (x) at the
equilibrium. This method requires knowing the force and the derivative of the force relatively to
the position.

The method is iterative and approximates the force curve by its tangent (shown in Figure
2.2). From a position (xk), the force (F (xk)) and the derivative of force (F ′(xk)) are calculated,
and a new position (xk+1) can be found. This new position is generally closer to the equilibrium
and is calculated as follows:

xk+1 = xk +
F (xk)

−F ′(xk)

Figure 2.2 shows three iterations with an initial value x0 of the spring length of 2.8m.
With:
The sti�ness A = 1000N/m,
The mass M = 10kg,
The acceleration of gravity g = 9.81m/s2,
The unstretched length of the spring l0 = 1m.
The stretched length at the equilibrium is 1.09m. That means that the spring stretches 9%.
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Figure 2.3: Residue of force for each Newton-Raphson method iteration.

After �ve iterations the equilibrium is reached or more exactly |F (x)| < 0.1N . The �gure
2.2 shows 3 iterations along the curve of force. Figure 2.3 represents the reduction of the force
residue (|F (x)|) with the �ve iterations.
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2.1.2 Two dimensions

Figure 2.4: Spring with two degrees of freedom: the vertical and horizontal positions of the mass.
The equilibrium is due to the mass weight and the spring force.

In this section a simple example in two dimensions is given (Figure 2.4): a spring with two
degrees of freedom, i.e., the horizontal (x) and the vertical (y) positions of the mass relative to
the spring �xation. The equilibrium of the system is due to the position of the mass along the
vertical and the horizontal. Figure 2.5 shows the variation of the norm of the residue of force

(
√
F 2
x + F 2

y ) on the mass due to the positions along x and y of the mass. The equilibrium point

is noted by the largest dot.
The sti�ness (K) of the spring is not constant: K is equal to Al. That means that the longer

the spring is, the sti�er it is. In this condition the horizontal and vertical forces on the mass are
due to the spring length and the weight of the mass:

Fx = T
x

l

Fy = T
y

l
−Mg

With:

T = Al
l − l0
l0

l =
√
x2 + y2

In this case the derivative of the forces is calculated relatively to x and y:

∂Fx
∂x

= A
l − l0
l0

+A
x2

ll0

∂Fx
∂y

= A
xy

ll0

∂Fy
∂x

= A
yx

ll0

∂Fy
∂y

= A
l − l0
l0

+A
y2

ll0
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Figure 2.5: Norm of the force (Z =
√
F 2
x + F 2

y ) function of mass coordinates (X,Y ). The largest

dot is the equilibrium position. The smallest dots are the Newton-Raphson iterations starting
at x = 0.9m and y = 1.9m.

The Newton-Raphson method accesses the equilibrium solution through iterations. At each
iteration the new position is calculated by the following relation:

Xk+1 = Xk +
F(Xk)

−F ′(Xk)

With:

Xk =
xk
yk

F(Xk) =
Fx(Xk)
Fy(Xk)

The ratio F(Xk)
−F ′(Xk) is the displacement h, such as F(Xk) = −F ′(Xk)h.

With these equations the equilibrium position is assessed (Figure 2.5). Figure 2.6 represents
the reduction of the force residue with the iterations.
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Figure 2.6: Residue of force (
√
F 2
x + F 2

y ) for each Newton-Raphson method iteration.
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2.1.3 Several dimensions

Main variables

The positions of the nodes are in vector X, the forces on the nodes are in vector F, and the
sti�ness matrix is K; xi and Fi refer to the same node along the same axis.

These variables are as follows:

X =

x1

x2

.

.
xn

F =

F1

F2

.

.
Fn

K =

−∂F1

∂x1
−∂F1

∂x2
. . − ∂F1

∂xn

−∂F2

∂x1
−∂F2

∂x2
. . − ∂F2

∂xn

. . . . .

. . . . .

−∂Fn

∂x1
−∂Fn

∂x2
. . −∂Fn

∂xn

From these three variables the displacement vector (h) can be calculated by solving the
following system of linear equations:

hK = F

Iterations

As mentioned earlier, the Newton-Raphson-method is an iterative one. The steps are as follows:

From the position (Xk) of the nodes resulting from iteration k:

Xk =

xk1

xk2

.

.
xkn

The force (Fk) on the nodes and the sti�ness (Kk) matrix are calculated:

Fk =

Fk1

Fk2

.

.
Fkn
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Kk =

Kk11 Kk12 . . Kk1n

Kk21 Kk22 . . Kk2n

. . . . .

. . . . .
Kkn1 Kkn2 . . Kknn

The node displacements (hk) are calculated:

hkKk = Fk

The new position of nodes are deduced:

Xk+1 = Xk + hk
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2.1.4 Singularity of the sti�ness matrix

In some cases the sti�ness matrix (K) could be singular. In this case solving hK = F (section
2.1.3 page 20) could lead to a very large displacement (hi >> 1) and to divergence of the method.

An example can be shown with the unstretched horizontal bar of Figure 2.7. This bar has
two extremities. If the �rst extremity (on the left on Figure 2.7) has the horizontal and vertical
coordinates (0, 0), the position vector is:

X =

0
0
x3

0

With x3 6= 0

If the force on the second extremity is vertical, the force vector is:

F =

0
0
0
F4

With F4 6= 0

As we will see in section 4.2 (page 73) the sti�ness matrix is:

K =

K11 0 −K11 0
0 0 0 0
−K11 0 K11 0

0 0 0 0

The matrix is singular. This is due to the derivative ∂F4

∂x4
, which is equal to 0 in this case of

an unstretched horizontal bar. i) If the bar is not horizontal this derivative will not be equal
to 0, because the derivative of the bar length will not equal 0. ii) If the bar is in tension (or
compression), even horizontal, the derivative ∂F4

∂x4
will not equal 0 because the derivative of the

tension direction is not equal to 0.

Figure 2.7: This bar is articulated around its left extremity. A vertical force (F4) is applied on
the right extremity. This unstretched bar displays a zero sti�ness along the vertical.

To avoid problems due to singularity, precautions are available, as described below.
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Additional sti�ness

A simple way is to add an arbitrary value (α) along the diagonal of the sti�ness matrix, such
that the previous matrix becomes:

K =

K11 + α 0 −K11 0
0 α 0 0
−K11 0 K11 + α 0

0 0 0 α

The added value (α) could decrease along the Newton-Raphson iterations. This added value
(α) does not modify the equilibrium position, but only the way to reach this equilibrium.

Additional mechanical behaviour

Another way to remove singularity is to add further mechanical behaviour. For example, if
this bar is in a �uid, air, or water, a vertical displacement will generate a drag in the opposite
direction, meaning that the components of the sti�ness matrix K22 and K44 will be not equal to
0.

Displacement limit

A displacement limit could be imposed to avoid too large a value:

hK = F

ifhi > limit hi = limit

ifhi ≤ limit hi = hi
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2.2 Other resolution methods

2.2.1 Newmark method

The Newmark method is used to �nd the equilibrium position of a mechanical structure. The
following example in one dimension explains the method in a simpli�ed way.

The method consists �rst in calculating forces on the structure, then calculating the acceler-
ation on the structure using the dynamic equation (F = Mγ). From this acceleration and using
a time step, the speed and the new position of the structure can be calculated (Chang 2004).

Figure 2.8: Force on the mass function of spring length and Newmark explicit method iterations.

For the example displayed in Figure 2.1, the equilibrium calculation follows the path shown
in Figure 2.8 with a time step of 0.04s. Figure 2.9 shows the residue of force. This calculation
follows the Newmark explicit method (Chang 2004).

2.2.2 Energy minimization

This method consists of �nding the position of the structure that leads to the minimum of the
energy. The energy involved here is the energy due to the conservative forces only. A conservative
force is a force that leads to a variation of energy between two positions independent of the path
between these two positions. The main conservative forces involved in marine structures are
weight and tension in elastic cables and netting twines.

In these cases the energy between two positions are quite simple to calculate:

EW = W∆h

ET =
1

2
K∆x2

EW : energy due to the weight (J),
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Figure 2.9: Residue of force for each Newmark explicit method iterations.

W : weight (N),
∆h: altitude variation between the two positions (m),
ET : energy due to the tension (J),
K: constant cable sti�ness (N/m),
∆x: cable length variation between the two positions (m).
Some forces are not conservative, as in the case of drag force. In such case the energy

consumed by the drag depends on the path followed by the structure between the two positions.
Due to non conservative forces, the method of minimization of energy is not quite adapted

to solve the equilibrium of marine structures. In case this method is used, the drag forces could
be transformed into constant force.
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3.1 State-of-the-art of numerical modelling for nets

3.1.1 Constitutive law for nets

There is little or no published work on the constitutive law for nets. Only Rivlin (1955), to
our knowledge, begins to express the stresses in a net surface, but only under conditions of
symmetrical deformation twine. If such constitutive law could be de�ned, usual �nite element
softwares could be adapted for nettings.

3.1.2 Twine numerical method

The twine numerical method includes almost all the work on numerical modelling of the net
(Ferro 1988; Bessonneau and Marichal 1998; Niedzwiedz and Hopp 1998; Tsukrov et al. 2003; Le
Dret et al. 2004; Lee et al. 2005). The initial idea is simple: the twines of the net are modelled
by bars (called here numerical twines). Then a few adjustments are required.

The twines could be modelled by two bars to account for the shortening, which appears as an
angle between the bars. The twines could be modelled with a single bar, but Young's modulus
in compression is almost zero to account for the shortening. Given the large number of twines
in some structures (up to one million), a numerical bar refers to several true twines (Figure 3.1).
This is called globalization.

(a) (b) (c)

Figure 3.1: Control net 50 meshes high by 50 and 45 wide (a), with a ratio of globalization of 5
(b) and 10 (c).

The major di�culty with this method of globalization lies in the description of the net
by numerical twines. Indeed, a structure is very often the assembly of several panels of nets.
Therefore, the creation of numerical twines in a panel will generate nodes on its contour. These
nodes are the basis for the creation of numerical twines of the adjacent panel (Figures 3.2 and
Figure 3.3).

Figure 3.2 (a) shows four panels (50 by 50 meshes) whose numerical twines connect perfectly
(Figure 3.2 (b)): the nodes on the edges are perfectly aligned with the nodes of the adjacent
panels.

Figure 3.3 (a) shows the same example, except that panel 1 is only 45 meshes horizontally.
In this case the nodes on the borders do not connect perfectly between panels 4 and 1 (Figure
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12

3 4

12

3 4

(a) (b)

Figure 3.2: Structure of four panels of 50 by 50 meshes (a) discretized in numerical twines (b;
globalization ratio of 10): the connection between numerical nodes on the borders of panels is
perfect (black dots for the border between panels ).

3.3 (b)), whereas the connections are perfect on the other three seams. This approach requires
facilities such modi�cation of the design of the netting panels. These facilities are not well
described in the literature dedicated to this method.

3.2 The �nite element for netting

Triangular elements have been developed to model the net (Figure 3.4). A number of approx-
imations are made in these triangular elements, with the aim of calculating the forces at the
vertices of these elements. These are calculated based on the positions of the vertices. The
basic assumption in modelling nets by triangular elements is that the twines remain parallel.
Under these conditions the twines of the same direction have the same deformation. The second
assumption is that the twines are modelled as elastic rods.

One di�culty with the method of numerical globalized twines (or numerical twines) was
described earlier: nodes on the edges of the panels do not always coincide perfectly (Figure 3.3
(b)). This di�culty disappears with triangular elements, since the discretization of a netting
panel is independent of the discretization of adjacent panels, except on the border. The same
panels of Figure 3.3 are discretized in Figure 3.5 with triangular elements. Panel 2 in (Figure 3.5
(a)) is discretized with large triangular elements and in (Figure 3.5 (b)) with smaller elements.
It is clear that triangular element discretization is done very easily, unlike the numerical twines
technique. This �exibility in the creation of triangular elements overcomes the cumbersome tool
for creating globalized twines. This burden results from many di�erent cases to be processed
and consequently adjustments that sometimes make it impossible to fully describe the structure
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3 4

12

3 4

q q q q qq q q q q q

(a) (b)

Figure 3.3: (a) Four netting panels 50 by 50 meshes except for panel 1, which has only 45 meshes
horizontally. (b) The globalization of 10 leads the nodes on the common border of panels 1 and
4 to not connect perfectly: panel 1 has �ve nodes on its bottom border, while the top border of
panel 4 has six nodes (black dots).

to be studied with the method of numerical twines.
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(a) (b)

Figure 3.4: The diamond mesh (a) is decomposed into triangular elements (b). The approxima-
tion in each triangle is that twines are parallel and therefore have the same deformation, and
that the twines are elastic.

12

3 4

12

3 4

(a) (b)

Figure 3.5: Case identical to Figure 3.3. Although the netting in panel 1 has only 45 meshes
horizontally, the triangular element discretization is easy. The step size of panel 2 is larger in
(a) than in (b).
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3.2.1 The basic method: direct formulation

The triangular �nite element dedicated to diamond mesh nets is described here.

Figure 3.6: A triangular element: the sides of the triangle are linear combinations of twine vectors
(U and V). The coordinates in twine number are noted. The origin of theses coordinates is the
intersection of U and V.

The triangular element is de�ned by its three vertices, which are connected to the net. The
coordinates of the vertices in number of twine vectors are then constant, whatever the deformation
of the triangle. Figure 3.6 shows an example. In this example the coordinates in twine number
of node 1 are 1.5 along the U twine and −3.5 along the V twine. It is clear that if the origin
of coordinates in twine number changes, the twine coordinates of nodes will change but will not
a�ect the equilibrium position of the net.

These twines are parallel inside the triangular element, which means that the sides of the
triangle (12, 23, 31) are linear combinations of twine vectors (U and V, cf. Figure 3.6). This
point is the main foundation of the model. These combinations are as follows:

12 = (U2 − U1)U+ (V2 − V1)V

13 = (U3 − U1)U+ (V3 − V1)V

12 (13): vector from vertex 1 (1) to vertex 2 (3).
The two previous equations with two unknowns (U and V) then give the following:

U =
V3 − V1

d
12− V2 − V1

d
13

V =
U2 − U1

d
13− U3 − U1

d
12

With side vectors:

12 =
x2 − x1

y2 − y1

z2 − z1
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13 =
x3 − x1

y3 − y1

z3 − z1

and
d = (U2 − U1)(V3 − V1)− (U3 − U1)(V2 − V1)

xi, yi, zi: Cartesian coordinates of vertex i,
Ui, Vi: coordinates of vertex i in number of twines (twine coordinates).
The twine vectors (U, V) are calculated from the Cartesian coordinates (xi, yi, zi) of the

vertices of the triangular element.
It appears that nothing implies that the number of twine coordinates of the vertices of the

triangle consists of integers. Therefore, these coordinates can be real. This implies that the
vertices of the triangle are not necessarily located on knots of the net (Figure 3.4). Similarly,
nothing prevents the triangle from being smaller than a mesh. It appears that while the triangle
does not contain any piece of twine of the net, d is not null, and therefore the triangle contains
twines and consequently a deformation energy. In other words, the triangular �nite element is a
homogenization of the mechanical properties of the net.

It also appears that every point of the twines belongs to only one triangular element and still
the same, regardless of the deformation of the net. Points on the contour of a triangular element
also belong to the neighbours.

3.2.2 Metric of the triangular element

The objective of the �nite element method is to calculate the Cartesian coordinates of the
numerical nodes. These nodes are, for the netting, the vertices of the triangular elements (Figures
3.7 and 3.8 a).

The nodes are �xed relative to the netting, which means that the coordinates of the nodes in
twines or meshes remain constant regardless of the netting deformation.

Figures 3.8 b and c show an example of coordinates of a triangular element. Generally
speaking, the mesh coordinates are used by the netting maker.

There are relations between the mesh coordinates and the twine coordinates, the bases of
which are noted in Figures 3.8 b and c.

The relations between the bases are the following:

u = U−V

v = U+V

This leads to:

U =
u+ v

2

V =
v− u

2

This means that the relations between the twine coordinates and the mesh coordinates of the
node P are the following:

UP = uP + vP

VP = vP − uP
and
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Figure 3.7: Two deformations of the same structure. The twines coordinates of vertices remain
constant. The twines coordinates of three vertices are noted. The dot is the origin of twines
numbering. Only 1 twine on 5 is drawn.

(a) (b) (c)

Figure 3.8: Triangular element: Cartesian coordinates (a), twines coordinates (b), and mesh
coordinates (c). The grey surface is a mesh surface (b).

uP =
UP − VP

2

vP =
UP + VP

2

Here, UP and VP are the twine coordinates, and uP and vP are the mesh coordinates of the
same node P . In these conditions the vector from origin to node P could be written as follows:

OP = UPU+ VPV

OP = uPu+ vPv
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Because the amplitude of a cross product of vectors is twice the surface of the triangle made
of these two vectors, the Cartesian surface of the triangular element (in m2) is half the amplitude
of the cross product of the side vectors of the triangular element:

S =
1

2
|12 ∧ 13|

The side vectors in Cartesian coordinates are as follows:

12 =
x2 − x1

y2 − y1

z2 − z1

13 =
x3 − x1

y3 − y1

z3 − z1

By the same way, the number of meshes, as de�ned in Figure 3.8b, is

nbm =
1

4
| ~12 ∧ ~13|

with side vectors in twine coordinates:

~12 =
U2 − U1

V2 − V1

0

~13 =
U3 − U1

V3 − V1

0

The number of meshes in a triangular element is

nbm =
1

4
[(U2 − U1)(V3 − V1)− (U3 − U1)(V2 − V1)] =

d

4

Because there are two twines U and two twines V per mesh, the number of twines U and V
is calculated as follows:

nbU =
d

2

nbV =
d

2

Because there are also two knots per mesh, the number of knots in a triangular element is

nbk =
d

2

The surface of one mesh is calculated through the cross product of twines vectors (U and V):

Ms = 2|U ∧V|

which is also the surface of the triangular element divided by the number of meshes in the
element:
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Ms =
S

nbm

In the case of Figures 3.6 and 3.8, d = 38, the number of meshes is 9.5, the number of U
twines is 18, the number of V twines is 18, and the number of knots is 18.
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3.3 The forces on the netting

3.3.1 Twine tension in diamond mesh

The tensions in the twines are required to estimate the forces on the vertices due to these tensions.
In the hypothesis of linear elasticity, these tensions are deduced from U and V, which have been
previously calculated. In these conditions the twine tensions are as follows:

Tu = EA
|U| − l0

l0

Tv = EA
|V| − l0

l0

E : Young's modulus of the material (N/m2),
A : mechanical section of the twines U and V (m2),
lo : unstretched length of twine vectors (m).

The principle of virtual work is used here to calculate the forces on the vertices due to the
tension in the twines.

The force component along X on vertex 1 of a triangular element is estimated by considering
a virtual displacement (∂x1) along the axis x of vertex 1. This displacement leads to an external
work:

We = Fx1∂x1

This displacement also induces a change in the length of mesh bars (∂|U| and ∂|V|), an
internal work per twine ∂|U|Tu and ∂|V|Tv and therefore an internal work for the triangular
element:

Wi = (∂|U|Tu + ∂|V|Tv)
d

2

The principle of virtual work implies that the external work equals the internal work, since
the forces represent the tension in the twines. That gives for each component of force on the
three vertices:

Fx1 = (Tu
∂|U|
∂x1

+ Tv
∂|V|
∂x1

)
d

2

Fy1 = (Tu
∂|U|
∂y1

+ Tv
∂|V|
∂y1

)
d

2

Fz1 = (Tu
∂|U|
∂z1

+ Tv
∂|V|
∂z1

)
d

2

Fx2 = (Tu
∂|U|
∂x2

+ Tv
∂|V|
∂x2

)
d

2

Fy2 = (Tu
∂|U|
∂y2

+ Tv
∂|V|
∂y2

)
d

2

Fz2 = (Tu
∂|U|
∂z2

+ Tv
∂|V|
∂z2

)
d

2

Fx3 = (Tu
∂|U|
∂x3

+ Tv
∂|V|
∂x3

)
d

2
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Fy3 = (Tu
∂|U|
∂y3

+ Tv
∂|V|
∂y3

)
d

2

Fz3 = (Tu
∂|U|
∂z3

+ Tv
∂|V|
∂z3

)
d

2

The derivatives ∂|U |
∂x1 ... ∂|V |

∂z3 can be calculated, as the equations relating to U , V and Xi, Yi,
Zi have already been described. This gives the following vectors force for the three vertices:

F1 = (V3 − V2)Tu
U

2|U|
+ (U2 − U3)Tv

V

2|V|

F2 = (V1 − V3)Tu
U

2|U|
+ (U3 − U1)Tv

V

2|V|

F3 = (V2 − V1)Tu
U

2|U|
+ (U1 − U2)Tv

V

2|V|
The Newton-Raphson method, described earlier, requires the calculation of the sti�ness ma-

trix, which is calculated from the derivatives of e�ort with respect to the positions of the vertices
of the triangular element. The 81 derivatives, that is to say, by 9 by 9 component coordinates,
are then the following:

The sti�ness matrix:

K =



−∂Fx1

∂x1
−∂Fx1

∂y1
. . . −∂Fx1

∂z3

−∂Fy1

∂x1
−∂Fy1

∂y1
. . . −∂Fy1

∂z3

. . . . . .

. . . . . .

. . . . . .

−∂Fz3

∂x1
−∂Fz3

∂y1
. . . −∂Fz3

∂z3


The components are calculated as follows:

∂Fw1

∂t
=
EAu(V3 − V2)

2

[
∂Uw
∂t

(
1

n0
− 1

|U|

)
+
∂|U|
∂t

Uw
|U|2

]
+
EAv(U2 − U3)

2

[
∂Vw
∂t

(
1

n0
− 1

|V|

)
+
∂|V|
∂t

Vw
|V|2

]
∂Fw2

∂t
=
EAu(V1 − V3)

2

[
∂Uw
∂t

(
1

n0
− 1

|U|

)
+
∂|U|
∂t

Uw
|U|2

]
+
EAv(U3 − U1)

2

[
∂Vw
∂t

(
1

n0
− 1

|V|

)
+
∂|V|
∂t

Vw
|V|2

]
∂Fw3

∂t
=
EAu(V2 − V1)

2

[
∂Uw
∂t

(
1

n0
− 1

|U|

)
+
∂|U|
∂t

Uw
|U|2

]
+
EAv(U1 − U2)

2

[
∂Vw
∂t

(
1

n0
− 1

|V|

)
+
∂|V|
∂t

Vw
|V|2

]
With:
w = x, y, z,
t = x1, y1, z1, x2, y2, z2, x3, y3, z3.

The following derivatives are also required.
The derivatives of the components of U are as follows:

∂Ux
∂x1

=
∂Uy
∂y1

=
∂Uz
∂z1

=
V2 − V3

d

∂Ux
∂x2

=
∂Uy
∂y2

=
∂Uz
∂z2

=
V3 − V1

d
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∂Ux
∂x3

=
∂Uy
∂y3

=
∂Uz
∂z3

=
V1 − V2

d

∂Ux
∂yi

=
∂Ux
∂zi

=
∂Uy
∂zi

=
∂Uy
∂xi

=
∂Uz
∂xi

=
∂Uz
∂yi

= 0

The derivatives of the components of V are the following:

∂Vx
∂x1

=
∂Vy
∂y1

=
∂Vz
∂z1

=
U3 − U2

d

∂Vx
∂x2

=
∂Vy
∂y2

=
∂Vz
∂z2

=
U1 − U3

d

∂Vx
∂x3

=
∂Vy
∂y3

=
∂Vz
∂z3

=
U2 − U1

d

∂Vx
∂yi

=
∂Vx
∂zi

=
∂Vy
∂zi

=
∂Vy
∂xi

=
∂Vz
∂xi

=
∂Vz
∂yi

= 0

The derivatives of |U| follow:

∂|U|
∂x1

=
V2 − V3

d2
[(x2 − x1)(V3 − V1)− (x3 − x1)(V2 − V1)]

∂|U|
∂x2

=
V3 − V1

d2
[(x2 − x1)(V3 − V1)− (x3 − x1)(V2 − V1)]

∂|U|
∂x3

=
V1 − V2

d2
[(x2 − x1)(V3 − V1)− (x3 − x1)(V2 − V1)]

∂|U|
∂y1

=
V2 − V3

d2
[(y2 − y1)(V3 − V1)− (y3 − y1)(V2 − V1)]

∂|U|
∂y2

=
V3 − V1

d2
[(y2 − y1)(V3 − V1)− (y3 − y1)(V2 − V1)]

∂|U|
∂y3

=
V1 − V2

d2
[(y2 − y1)(V3 − V1)− (y3 − y1)(V2 − V1)]

∂|U|
∂z1

=
V2 − V3

d2
[(z2 − z1)(V3 − V1)− (z3 − z1)(V2 − V1)]

∂|U|
∂z2

=
V3 − V1

d2
[(z2 − z1)(V3 − V1)− (z3 − z1)(V2 − V1)]

∂|U|
∂z3

=
V1 − V2

d2
[(z2 − z1)(V3 − V1)− (z3 − z1)(V2 − V1)]

The derivatives of |V| are shown below:

∂|V|
∂x1

=
U2 − U3

d2
[(x2 − x1)(U3 − U1)− (x3 − x1)(U2 − U1)]

∂|V|
∂x2

=
U3 − U1

d2
[(x2 − x1)(U3 − U1)− (x3 − x1)(U2 − U1)]

∂|V|
∂x3

=
U1 − U2

d2
[(x2 − x1)(U3 − U1)− (x3 − x1)(U2 − U1)]
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∂|V|
∂y1

=
U2 − U3

d2
[(y2 − y1)(U3 − U1)− (y3 − y1)(U2 − U1)]

∂|V|
∂y2

=
U3 − U1

d2
[(y2 − y1)(U3 − U1)− (y3 − y1)(U2 − U1)]

∂|V|
∂y3

=
U1 − U2

d2
[(y2 − y1)(U3 − U1)− (y3 − y1)(U2 − U1)]

∂|V|
∂z1

=
U2 − U3

d2
[(z2 − z1)(U3 − U1)− (z3 − z1)(U2 − U1)]

∂|V|
∂z2

=
U3 − U1

d2
[(z2 − z1)(U3 − U1)− (z3 − z1)(U2 − U1)]

∂|V|
∂z3

=
U1 − U2

d2
[(z2 − z1)(U3 − U1)− (z3 − z1)(U2 − U1)]
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3.3.2 Twine tension in hexagonal mesh

The same technique for the diamond mesh netting is used for hexagonal ones. The triangular
element dedicated to the hexagonal mesh netting has the same assumption as previously adopted:
the three families of twines inside the element are parallel, i.e., l, m, and n twine vectors, are
parallel (Figure 3.9).

Figure 3.9: Triangular element dedicated to the hexagonal mesh nets. The twine vectors are l,
m, and n. The number of meshes are noted for each vertex. The mesh base is in grey and is
de�ned by vectors U and V.

The mesh base (shaded area in Figure 3.9) is �rst de�ned. This base mesh is de�ned as a
parallelogram; its corners coincide with knots, and it includes two l twine vectors, two m twine
vectors, and two n twine vectors. This base mesh is also used to quantify the number of meshes
inside the triangular element. The vertices of the triangular element then have coordinates in
base meshes (U1, U2, U3, V1, V2, V3; Figure 3.9).

Vectors U and V are the sides of the mesh base. There are linear relations between these
two vectors and the sides of the triangular element (arrows on Figure 3.9):

12 = (U2 − U1)U+ (V2 − V1)V

13 = (U3 − U1)U+ (V3 − V1)V

The two previous equations give the following as in the case of diamond mesh (see section
3.2.1, page 32), namely:

U =
V3 − V1

d
12− V2 − V1

d
13

V =
U3 − U1

d
12− U2 − U1

d
13

With vectors of the sides of the mesh base:

12 =
x2 − x1

y2 − y1

z2 − z1
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13 =
x3 − x1

y3 − y1

z3 − z1

and

d = (U2 − U1)(V3 − V1)− (U3 − U1)(V2 − V1)

xi, yi, zi: Cartesian coordinates of vertex i.

The number of base meshes in a triangular element is equal to d/2, the total number twine
vectors is 3d, the number of twine vectors l, m, or n is d, and the number of nodes is 2d.

Tensions in twine vectors l, m, and n are now calculated. This is done by solving the force
balance of the twines. This is solved by writing the following equations:

1) The base mesh de�nition leads to (Figure 3.9) :

U = −m+ 2n− l

V = −m+ l

2) The amplitude of tension in the twines gives:

|Tl| = EAl
|l| − l0
l0

|Tm| = EAm
|m| −m0

m0

|Tn| = EAn
|n| − n0

n0

3) The balance of tensions leads to:

Tl +Tm +Tn = 0

This gives six equations with six unknowns (l, m, n, Tl, Tm, Tn).

Equilibrium of the joint knot

The six previous equations can be reduced to the two that follow with two unknowns (mx and
my components of mmm), since the triangular element has been turned in the plane XOY (Priour
2002, Priour 2006):

mx + Vx√
(mx + Vx)2 + (my + Vy)2

ElAl
lo

[√
(mx + Vx)2 + (my + Vy)2 − lo

]
+

mx√
m2
x +m2

y

EmAm
mo

[√
m2
x +m2

y −mo

]

+
mx + Ux+Vx

2√
(mx + Ux+Vx

2 )2 + (my +
Uy+Vy

2 )2

EnAn
no

[√
(mx +

Ux + Vx
2

)2 + (my +
Uy + Vy

2
)2 − no

]
= 0
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my + Vy√
(mx + Vx)2 + (my + Vy)2

ElAl
lo

[√
(my + Vy)2 + (my + Vy)2 − lo

]
+

my√
m2
x +m2

y

EmAm
mo

[√
m2
y +m2

y −mo

]

+
my +

Uy+Vy

2√
(mx + Ux+Vx

2 )2 + (my +
Uy+Vy

2 )2

EnAn
no

[√
(my +

Uy + Vy
2

)2 + (my +
Uy + Vy

2
)2 − no

]
= 0

mx, my: components of m twine (m),
lo, mo, no: unstretched length of twines l, m, and n (m),
Ux, Uy, Vx, Vy: components of the sides of the mesh base (m; see Figure 3.9),
El, Em, En: Young modulus of twines l, m, and n (Pa),
Al, Am, An: section of twines l, m, and n (m2).
These two equations describe the equilibrium of the joint knot of three twines in a triangle,

the sides of which are UUU+VVV
2 and VVV (Figure 3.10). These equations are in newtons.

Figure 3.10: The three twines are in the triangle de�ned by UUU+VVV
2 and VVV

(cf. Figure 3.9).

Approximation of the equilibrium of the joint

The analytical solution of the two previous equations has not been found. Therefore, the follow-
ing approximation has been made to simplify the equations. This approximation is acceptable
because the stretched lengths of the twines are close to the unstretched length.
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mx

|mmm|
≈ mx

mo

my

|mmm|
≈ my

mo

With this approximation the two previous equilibrium equations are reduced to the following:

(mx + Vx)ElAl

l2o
(
√

(mx + Vx)2 + (my + Vy)2 − lo) +mx
EmAm

m2
o

(
√
m2
x +m2

y −mo) +

(mx + Ux+Vx

2 )EnAn

n2
o

(
√

(mx + Ux+Vx

2 )2 + (my +
Uy+Vy

2 )2 − no) = 0

(my + Vy)ElAl

l2o
(
√

(mx + Vx)2 + (my + Vy)2 − lo) +my
EmAm

m2
o

(
√
m2
x +m2

y −mo) +

(my +
Uy+Vy

2 )EnAn

n2
o

(
√

(mx + Ux+Vx

2 )2 + (my +
Uy+Vy

2 )2 − no) = 0

They are the complete form of the following:

lx
ElAl
l2o

(|lll| − lo) +mx
EmAm
m2
o

(|mmm| −mo) + nx
EnAn
n2
o

(|nnn| − no) = 0

ly
ElAl
l2o

(|lll| − lo) +my
EmAm
m2
o

(|mmm| −mo) + ny
EnAn
n2
o

(|nnn| − no) = 0

Newton-Raphson method

The previous approximation has not been su�cient to reach the analytical solution. The Newton-
Raphson method is used to �nd a numerical solution (Deu�hard 2004).

For each iteration the displacement h is searched to �nd the equilibrium:

hk =
F (xk)

−F ′(xk)

xk+1 = xk + hk

k: iteration number,

F: force on nodes,
x: position of nodes.
Here:

FFF =

{
lx
ElAl

l2o
(|lll| − lo) +mx

EmAm

m2
o

(|mmm| −mo) + nx
EnAn

n2
o

(|nnn| − no) = F1

ly
ElAl

l2o
(|lll| − lo) +my

EmAm

m2
o

(|mmm| −mo) + ny
EnAn

n2
o

(|nnn| − no) = F2

xxx =

{
mx

my
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The derivative is:

F ′ =

∣∣∣∣ D11 D12

D21 D22

∣∣∣∣ .
With:

D11 = −[
EAl
l2o

(lll − lo +
l2x
lll

) +
EAm
m2
o

(mmm−mo +
m2
x

mmm
) +

EAn
n2
o

(nnn− no +
n2
x

nnn
)]

D12 = D21 = −[
EAl
l2o

lxly
lll

+
EAm
m2
o

mxmy

mmm
+
EAn
n2
o

nxny
nnn

]

D22 = −[
EAl
l2o

(lll − lo +
l2y
lll

) +
EAm
m2
o

(mmm−mo +
m2
y

mmm
) +

EAn
n2
o

(nnn− no +
n2
y

nnn
)]

With the previous conditions the displacement (hhh) can be calculated:

hhh =

{
D22F1−D12F2

D22D11−D12D21
D22F2−D21F1

D22D11−D12D21

Forces on nodes

The forces on the sides of the triangular element are calculated from the twine tension. These
forces are related to the number of twines through the sides of the triangle. This number of
twines through each side can be calculated based on the number of base mesh of each vertex.

The e�ort on the side along U of the base mesh (Figure 3.9) is

FU = Tl −Tm

The e�ort along V is

FV = −Tn

Under these conditions, the e�ort on each side of the triangle can be deduced:

T12 = (U2 − U1)(Tl −Tm) + (V2 − V1)(−Tn)

T23 = (U3 − U2)(Tl −Tm) + (V3 − V2)(−Tn)

T31 = (U1 − U3)(Tl −Tm) + (V1 − V3)(−Tn)

Here, Tij is the e�ort on the side ij of the triangular element.
Each side e�ort is distributed on each end of this side as the twines are evenly distributed

along the sides of the triangle:

F1 =
T12 +T31

2

F2 =
T23 +T12

2

F3 =
T31 +T23

2
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F1, F2, and F3 are the forces on the three vertices of the triangular element due to the
tension in the twines.

The contribution of the sti�ness matrix is not described here.
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3.3.3 Hydrodynamic drag

Introduction

The drag force on the netting is calculated in this model as the sum of the drag force on each
twine (U and V). This assumption is probably questionable, because the drag on a twine alone
is surely not exactly the same as the drag on this twine among other twines as it is the case
in a netting. Anyway, this assumption leads to the calculation of the drag of each triangular
element because for each the twines vectors are known, as described earlier. The formulation
for the twine vector drag is based on the assumptions of Morrison adapted by Landweber and
Richtmeyer (Landweber and Protter 1947, Richtmeyer 1941).

The drag amplitudes on the U twines used in the model (Figure 3.11) are:

|F| = 1

2
ρCdDl0 [|c|sin(α)]

2 d

2

|T| = f
1

2
ρCdDl0 [|c|cos(α)]

2 d

2

The directions of the drag on the U twine vectors are:

F

|F|
=

U ∧ (c ∧U)

|U ∧ (c ∧U)|

T

|T|
=

F ∧ (c ∧ F)

|F ∧ (c ∧ F)|

F: normal drag (N) on the U twines, following the assumptions of Landweber,

T: tangential drag (N) on the U twines, Richtmeyer hypothesis,

ρ: density of water (kg/m3),

Cd: normal drag coe�cient,

f : tangential drag coe�cient,

D: diameter of twine (m),

l0: length of twine vector (m),

c: water velocity relative to the twine (m/s),

α: angle between the U twine and the water velocity (radians),

d/2 : number of U twine vectors in the triangular element.

In the equations of drag amplitude, the expressions |c|sin(α) and |c|cos(α) are the normal
and tangential projections on c along the U twine vector.

The drag on V twines for a triangular element are similar: U is replaced by V and α by β.

The length of twine vectors used in the formulation of drag amplitude can be assessed by |U|
for the U twines and by |V| for the V twines. That would mean it takes into account the twine
elongation. Generally speaking, a twine elongation is associated with a diameter D reduction by
the Poisson coe�cient. Because this Poisson coe�cient is not taken into account in the present
modelling, the twine surface is approximated by Dl0, where D is the diameter of the twines and
l0 is the unstretched length of the twine vectors.

All parameters, including the angles α and β, are constant and known for each triangular
element. Therefore, the drag can be calculated for each triangular element. The drag force for a
triangular element is spread over the three vertices of the element at 1/3 per vertex.
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Figure 3.11: Normal (F) and tangential (T) forces on a twine due to the relative velocity of
water (c).

Figure 3.12: Example of triangular element. The drag forces are calculated for U twines and for
V twines. The twine coordinates are noted in this example.

De�nitions of the variables

The Cartesian coordinates of the three nodes (1, 2, 3) of the triangular element (cf. Figure 3.12)
follow:

1 =
x1

y1

z1

2 =
x2

y2

z2
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3 =
x3

y3

z3

The twine coordinates of the three nodes (1, 2, 3) of the triangular element are as follows:

1 =
U1

V1

2 =
U2

V2

3 =
U3

V3

The vector current is

c =
cx
cy
cz

Generally speaking, cz is null.
It has been seen previously:

U =
V3 − V1

d
12− V2 − V1

d
13

V =
U2 − U1

d
13− U3 − U1

d
12

with sides vectors:

12 =
x2 − x1

y2 − y1

z2 − z1

13 =
x3 − x1

y3 − y1

z3 − z1

and

d = (U2 − U1)(V3 − V1)− (U3 − U1)(V2 − V1)

The components of U twine vectors are as follows:

U =
Ux
Uy
Uz

U =

1
d [(V3 − V1)(x2 − x1)− (V2 − V1)(x3 − x1)]
1
d [(V3 − V1)(y2 − y1)− (V2 − V1)(y3 − y1)]
1
d [(V3 − V1)(z2 − z1)− (V2 − V1)(z3 − z1)]

The angle between current and U is

cos(α) =
c.U

|c||U|
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The components of V twine vectors are as follows:

V =
Vx
Vy
Vz

V =

1
d [(U2 − U1)(x3 − x1)− (U3 − U1)(x2 − x1)]
1
d [(U2 − U1)(y3 − y1)− (U3 − U1)(y2 − y1)]
1
d [(U2 − U1)(z3 − z1)− (U3 − U1)(z2 − z1)]

The angle between current and V is

cos(β) =
c.V

|c||V|

Evaluations for the sti�ness of the normal force on the U twines

The normal force on U twines is

F = |F| U ∧ (c ∧U)

|U ∧ (c ∧U)|

That means that the x y and z components are as follows:

Fx = |F|Ex
|E|

Fy = |F|Ey
|E|

Fz = |F|Ez
|E|

With:

E = U ∧ (c ∧U)

and

E =
Ex
Ey
Ez

The x component of the derivative is

F′x = |F|′Ex
|E|

+ |F|E
′
x|E| −Ex|E|′

|E|2

Which gives for the x y and z components:

F′x = |F|′Ex
|E|

+
|F|
|E|2

{
E′x|E| −

Ex

|E|
(ExE

′
x +EyE

′
y +EzE

′
z)

}
F′y = |F|′Ey

|E|
+
|F|
|E|2

{
E′y|E| −

Ey

|E|
(ExE

′
x +EyE

′
y +EzE

′
z)

}
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F′z = |F|′Ez
|E|

+
|F|
|E|2

{
E′z|E| −

Ez

|E|
(ExE

′
x +EyE

′
y +EzE

′
z)

}
For this assessment the derivative of E is required:

E′ = U′ ∧ (c ∧U) +U ∧ (c ∧U′)

This leads to:

E′ = 2(U′.U)c− (U′.c)U− (U.c)U′

Which is:

E′x = 2(U′.U)cx − (U′.c)Ux − (U.c)U′x

E′y = 2(U′.U)cy − (U′.c)Uy − (U.c)U′y

E′z = 2(U′.U)cz − (U′.c)Uz − (U.c)U′z

With:

U′.U = UxU
′
x +UyU

′
y +UzU

′
z

U′.c = cxU
′
x + cyU

′
y + czU

′
z

U.c = Uxcx +Uycy +Uzcz

The derivative of the amplitude of the normal force is

|F|′ =
1

2
ρCdDl0|c|2

(
[sin(α)]2

)′ d
2

which is

|F|′ =
d

2
ρCdDl0|c|2cos(α)sin(α)α′

The derivative of α is

α′ =
−1√

1− ( c.U
|c||U| )

2

[
c.U

|c||U|

]′
That gives

α′ =
−1√

1− ( c.U
|c||U| )

2

[
c

|c|
.

(
U

|U|

)′]

The derivative of the U twine direction is(
U

|U|

)′
=
U′|U| −U|U|′

|U|2

That means that the derivative of α is

α′ =
−1√

1− ( c.U
|c||U| )

2

(
c

|c|

)
.

(
U′|U| −U|U|′

|U|2

)
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or

α′ =
−1

|U|2|c| sinα
{
|U|

[
cxU

′
x + cyU

′
y + czU

′
z

]
− (c.U)|U|′

}
In this case U′x is the component along x of U′.
The derivative of vector U is

U′ =
U′x
U′y
U′z

Which is

∂Ux
∂x1

=
∂Uy
∂y1

=
∂Uz
∂z1

=
1

d
(V2 − V3)

∂Ux
∂x2

=
∂Uy
∂y2

=
∂Uz
∂z2

=
1

d
(V3 − V1)

∂Ux
∂x3

=
∂Uy
∂y3

=
∂Uz
∂z3

=
1

d
(V1 − V2)

∂Ux
∂y1

=
∂Ux
∂y2

=
∂Ux
∂y3

=
∂Ux
∂z1

=
∂Ux
∂z2

=
∂Ux
∂z3

= 0

∂Uy
∂z1

=
∂Uy
∂z2

=
∂Uy
∂z3

=
∂Uy
∂x1

=
∂Uy
∂x2

=
∂Uy
∂x3

= 0

∂Uz
∂x1

=
∂Uz
∂x2

=
∂Uz
∂x3

=
∂Uz
∂y1

=
∂Uz
∂y2

=
∂Uz
∂y3

= 0

On vector form and for the nine coordinates of the triangular element it is:

∂U

∂x1
=

V2−V3

d
0
0

∂U

∂y1
=

0
V2−V3

d
0

∂U

∂z1
=

0
0

V2−V3

d

∂U

∂x2
=

V3−V1

d
0
0

∂U

∂y2
=

0
V3−V1

d
0

∂U

∂z2
=

0
0

V3−V1

d
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∂U

∂x3
=

V1−V2

d
0
0

∂U

∂y3
=

0
V1−V2

d
0

∂U

∂z3
=

0
0

V1−V2

d

The derivative of the norm of vector U is

|U|′ =
UxU

′
x + UyU

′
y + UzU

′
z

|U|

This gives for the nine coordinates of the triangular element:

∂|U|
∂x1

=
Ux(V2 − V3)

d|U|

∂|U|
∂y1

=
Uy(V2 − V3)

d|U|

∂|U|
∂z1

=
Uz(V2 − V3)

d|U|

∂|U|
∂x2

=
Ux(V3 − V1)

d|U|

∂|U|
∂y2

=
Uy(V3 − V1)

d|U|

∂|U|
∂z2

=
Uz(V3 − V1)

d|U|

∂|U|
∂x3

=
Ux(V1 − V2)

d|U|

∂|U|
∂y3

=
Uy(V1 − V2)

d|U|

∂|U|
∂z3

=
Uz(V1 − V2)

d|U|

This leads to the derivatives of α (angle between c and U):

∂α

∂x1
=

V3 − V2

d|U|2|c|
√

1−
(

c.U
|c||U|

)2

[
cx|U| −

Ux
|U|

c.U

]

∂α

∂y1
=

V3 − V2

d|U|2|c|
√

1−
(

c.U
|c||U|

)2

[
cy|U| −

Uy
|U|

c.U

]
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∂α

∂z1
=

V3 − V2

d|U|2|c|
√

1−
(

c.U
|c||U|

)2

[
cz|U| −

Uz
|U|

c.U

]

∂α

∂x2
=

V1 − V3

d|U|2|c|
√

1−
(

c.U
|c||U|

)2

[
cx|U| −

Ux
|U|

c.U

]

∂α

∂y2
=

V1 − V3

d|U|2|c|
√

1−
(

c.U
|c||U|

)2

[
cy|U| −

Uy
|U|

c.U

]

∂α

∂z2
=

V1 − V3

d|U|2|c|
√

1−
(

c.U
|c||U|

)2

[
cz|U| −

Uz
|U|

c.U

]

∂α

∂x3
=

V2 − V1

d|U|2|c|
√

1−
(

c.U
|c||U|

)2

[
cx|U| −

Ux
|U|

c.U

]

∂α

∂y3
=

V2 − V1

d|U|2|c|
√

1−
(

c.U
|c||U|

)2

[
cy|U| −

Uy
|U|

c.U

]

∂α

∂z3
=

V2 − V1

d|U|2|c|
√

1−
(

c.U
|c||U|

)2

[
cz|U| −

Uz
|U|

c.U

]

Evaluation for the sti�ness of the tangential force on the U twines

The tangential force on U twines is

T = |T| F ∧ (c ∧ F)

|F ∧ (c ∧ F)|
Following the de�nition of F1:

T = |T| [U ∧ (c ∧U)] ∧ {c ∧ [U ∧ (c ∧U)]}
| [U ∧ (c ∧U)] ∧ {c ∧ [U ∧ (c ∧U)]} |

It follows that

T = |T| [(U.U)(c.c)− (U.c)2](U.c)U

|[(U.U)(c.c)− (U.c)2](U.c)U|
or

T = |T| [|U|2|c|2 − (|U||c|cosα)2]|U||c|cosαU
|[|U|2|c|2 − (|U||c|cosα)2]|U||c|cosαU|

and

T = |T| cosαU

| cosα||U|
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The x y and z components are as follows:

Tx = |T| cosαUx

| cosα||U|

Ty = |T| cosαUy

| cosα||U|

Tz = |T| cosαUz

| cosα||U|
The derivative of Tx is:

T′x = |T|′ cosαUx

| cosα||U|
+ |T| (cosαUx)′| cosα||U| − cosαUx(| cosα||U|)′

(| cosα||U|)2

T′x = |T|′ cosαUx

| cosα||U|

+
|T|

| cosα||U|
(cosαU′x − sinαα′Ux)

− |T| cosαUx

(| cosα||U|)2

[
| cosα|

UxU
′
x +UyU

′
y +UzU

′
z

|U|
− cosα

| cosα|
sinαα′|U|

]

T′x = |T|′Tx
|T|

+
|T|

| cosα||U|
(cosαU′x − sinαα′Ux)

− Tx

| cosα||U|

[
| cosα|

UxU
′
x +UyU

′
y +UzU

′
z

|U|
− cosα

| cosα|
sinαα′|U|

]

T′y = |T|′Ty
|T|

+
|T|

| cosα||U|
(cosαU′y − sinαα′Uy)

− Ty

| cosα||U|

[
| cosα|

UxU
′
x +UyU

′
y +UzU

′
z

|U|
− cosα

| cosα|
sinαα′|U|

]

T′z = |T|′Tz
|T|

+
|T|

| cosα||U|
(cosαU′z − sinαα′Uz)

− Tz

| cosα||U|

[
| cosα|

UxU
′
x +UyU

′
y +UzU

′
z

|U|
− cosα

| cosα|
sinαα′|U|

]
The derivative of the amplitude of the tangential force is

|T|′ = f
1

2
ρCdDl0|c|2

(
[cos(α)]2

)′ d
2

which is

|T|′ = −d
2
fρCdDl0|c|2cos(α)sin(α)α′

Evaluations for the sti�ness of the normal and tangential forces on the V twines

This evaluations are identical to the previous, but with V and β used in place of U and α.
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3.3.4 Twine �exion in Netting plane

The resistance to twine bending in the plane of the net is also called the mesh opening sti�-
ness (Figure 3.13). In a �rst approximation, this sti�ness is neglected, but the use of steeper
nets makes it necessary to take this mechanical phenomenon into account in numerical models.
Currently, only O'Neill (1994, 2004) and the present model take this mesh opening sti�ness into
account.

(a) (b)

Figure 3.13: Demonstration of mesh opening sti�ness. Deformation remains limited despite the
weight added to the bottom of the net on (b).

In the present model, the half angle (α) between the twine vectors (U and V) could lead to
a couple between twine vectors (U and V). This angle is calculated by

α =
1

2
acos(

U.V

|U||V|
)

The couple on a knot due to the U twine is equilibrated by the couple of the V twine;
otherwise the knot would not be in equilibrium. These couples are approximated in the model
by

Cu = −Cv = H(α− α0)

where α0 is the angle between the unstressed twines (without couple on twines) and H is the
mesh opening sti�ness (N.m/Rad).

This couple varies linearly with the angle. O'Neill (1994, 2004) suggests another formulation,
since he models the twines as beams.

Forces at the vertices of the triangular element, mechanically equivalent to the mesh opening
sti�ness, are calculated using the principle of virtual work:

If ∂x1 is a virtual displacement along the x axis of vertex 1, then the external work (We) is

We = Fx1∂x1
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where Fx1 is the e�ort along the x axis at vertex 1 of a triangular element.
This displacement creates a change in angle α, and therefore an internal work (Wi):

Wi =
d

2
(Cu∂α+ Cv∂α)

d = (U2 − U1)(V1 − V3)− (U3 − U1)(V1 − V2)

where d/2 is the number of nodes in a triangular element.
Since the internal work is equal to the external work,

Fx1 = Cud
∂α

∂x1

This gives, for all the force components at the vertices of the triangular element,

Fwi = H(α− α0)d
∂α

∂wi

where w = x, y, and z, and i = 1, 2, and 3.
The derivative ∂α

∂wi
of α relative to the coordinates wi of vertices, which is necessary for

calculating the forces, is

∂α

∂wi
=
Vwvi −Uwui − Uw(U.V)vi

|U|2 − Vw(U.V)ui

|V|2

2dsin(α)|U||V|
where w = x, y, and z, and i = 1, 2, and 3.
The sti�ness matrix (−F′(X)) is completed by calculating the derivative component of e�orts

related to the coordinates of the vertices of the triangular element:

−∂Fwi
∂tj

where as above, w = x, y, and z, and i = 1, 2, and 3, and t = x, y, and z, and j = 1, 2, and
3.
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3.3.5 Twine �exion outside the netting plane

Figure 3.14: The net bends under its own weight, which highlights the bending sti�ness of the
net.

To our knowledge, no numerical model, except the present one, takes into account this me-
chanical property of the nets (Figure 3.14). The angle between the U twine of a triangle (Ua

in Figure 3.15) and its neighbour (Ub) is constant along the side common to the two triangular
elements. This angle quanti�es the bending of the twine.

The bending sti�ness of the U twine tends to keep the twine straight. The equation governing
the bending is as follows:

C =
EI

ρ

C: bending couple on the U twine (Nm),
EI: �exural sti�ness, which is Young's modulus by inertia (Nm2),
ρ: radius of curvature of the U twine (m).

This couple is generated, in the present modelling, when two successive triangular elements
are bent or, more precisely, when the U twine is bent to the passage of a triangular element with
its neighbour. The couple will then generate forces on the vertices (1, 2, 3, 4 in Figure 3.15)
on the two adjacent triangular elements. Obviously the bending of the V twines also leads to a
couple. In the following only the e�ect of bending on the U twines is described; the bending on
V twines has to be taken into account in the same way.

The radius of the curvature is estimated from the average lengths of twine U in each triangular
element (Figure 3.16). These average lengths are calculated using the average number of twine
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Figure 3.15: Two triangular elements (134 and 243), the coordinates of which, in number of
twines, are noted. The angle between the twine vectors Ua and Ub leads to a bending couple
between the two triangular elements.

vectors (Ua and Ub) by the U twine in the two triangular elements (na and nb).
The twine vectors of the two triangular elements (see section 3.2.1 page 32) are as follows:

Ua =
V4 − V1

da
13− V3 − V1

da
14

Va =
U4 − U1

da
13− U3 − U1

da
14

Ub =
V3 − V2

db
24− V4 − V2

db
23

Vb =
U3 − U2

db
24− U4 − U2

db
23

Ui, Vi: coordinates of vertex i in number of twines (twine coordinates).
With side vectors:

13 =
x3 − x1

y3 − y1

z3 − z1
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Figure 3.16: Pro�le view of the two triangular elements. The radius of curvature (ρ) is estimated
from the average length of twine vectors U in each triangle : naUa and nbUb.

24 =
x4 − x2

y4 − y2

z4 − z2

The numbers of twine vectors (Ua and Ub) for the U twines in the two triangular elements
are

da = (U3 − U1)(V4 − V1)− (U4 − U1)(V3 − V1)

db = (U4 − U2)(V3 − V2)− (U3 − U2)(V4 − V2)

The average numbers of twine vectors (Ua and Ub) by U twine are calculated from the
number of twine vectors in the triangular elements and the length of the common side in twine
coordinates (V3 − V4):

na =
da

2|V3 − V4|

nb =
db

2|V3 − V4|

The radius of the curvature (ρ) is calculated from the circumscribed circle in the triangle of
sides naUa, nbUb and naUa + nbUb, as shown in Figure 3.16. The side lengths of the triangle
are

A = |naUa|

B = |nbUb|

C = |naUa + nbUb|
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The equations of the triangle, which can be obtained in a mathematical compendium, give
the radius of curvature:

ρ =
ABC

4S

where S and p, the surface and the half perimeter of the triangle, are

S =
√
p(p−A)(p−B)(p− C)

p =
A+B + C

2

The forces on the vertices (1, 2, 3 and 4) of the two triangular elements due to the twine
bending are calculated using the principle of virtual work. In case of theX component of the force
on vertex 1 (Fx1), a displacement (∂x1) is de�ned along X axis of vertex 1. This displacement
generates an external work:

We = Fx1∂x1

This movement also causes a variation of angle (∂α) between the twine vectors (Ua and Ub)
of the two triangular elements. This variation induces an internal work:

Wi = C∂α(V3 − V4)

According to the principle of virtual work, these works are equal, which gives the following:

Fwi =
EI

ρ

∂α

∂wi
(V3 − V4)

w: directions x, y, and z,
i: vertices 1, 2, 3, and 4,
V3 − V4: number of twines involved in the bending.

The angle α between the two twine vectors (Ua and Ub) of the two triangular elements is
calculated with the dot product of twine vectors (Figure 3.16):

cos(α) =
Ua.Ub

|Ua||Ub|
The 12 derivatives of α relative to the coordinates of the vertices of the two triangular elements

( ∂α∂wi ) are therefore required to calculate the e�ort on the vertices. They are as follows:

∂α

∂w1
= (V3 − V4)

(Ua.Ub)Uaw − Ubw|Ua|2

|Ua|3|Ub|dasin(α)

∂α

∂w2
= (V4 − V3)

(Ua.Ub)Ubw − Uaw|Ub|2

|Ub|3|Ua|dbsin(α)

∂α

∂w3
= (V4 − V1)

(Ua.Ub)Uaw − Ubw|Ua|2

|Ua|3|Ub|dasin(α)
+ (V2 − V4)

(Ua.Ub)Ubw − Uaw|Ub|2

|Ub|3|Ua|dbsin(α)

∂α

∂w4
= (V1 − V3)

(Ua.Ub)Uaw − Ubw|Ua|2

|Ua|3|Ub|dasin(α)
+ (V3 − V2)

(Ua.Ub)Ubw − Uaw|Ub|2

|Ub|3|Ua|dbsin(α)
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Here, Uaw is the component along the w axis of Ua. In this case w is the axis consisting of
x, y, and z. Obviously, Ubw is the component along the w axis of Ub.

The e�orts on the four vertices of the two triangular elements due to the bending of the U
twine between these two elements have been previously calculated.

The sti�ness matrix (−F ′(X)) is completed by calculating the derivative of the 12 components
of the forces relative to the 12 coordinates of the vertices of the two triangular elements. The
144 components of this matrix are

−∂Fwi
∂tj

With, as above:
w: x, y, and z.
i: 1, 2, 3, and 4.

And more:
t: x, y, and z,
j: 1, 2, 3, and 4.
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3.3.6 Fish catch pressure

Figure 3.17: Measurement in a �ume tank tests (cross) and numerical modelling (mesh) for a
scale (1/3) model of North Sea cod-end with 300kg of catch.

The mechanical e�ect of caught �sh (Figure 3.17) in a net is estimated by a pressure (Anon
1999). This pressure is exerted directly on the triangular elements in contact with the �sh. In
the case of water speed relative to that catch:

p =
1

2
ρCdv

2

p: pressure of the catch on the net (Pa),
ρ: density of water (kg/m3),
Cd: drag coe�cient,
v: current amplitude (m/s).

This pressure is then applied to the surface of the triangular element (12∧132 ). The resultant
force is directed perpendicular to the triangular element. The e�ort on each vertex is that force
by 1/3.

F1 =
12 ∧ 13

2

p

3

F2 =
12 ∧ 13

2

p

3

F3 =
12 ∧ 13

2

p

3

With sides vectors:

12 =
x2 − x1

y2 − y1

z2 − z1

13 =
x3 − x1

y3 − y1

z3 − z1
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That gives:

F1x =
p

6
[(y2 − y1)(z3 − z1)− (z2 − z1)(y3 − y1)]

F1y =
p

6
[(z2 − z1)(x3 − x1)− (x2 − x1)(z3 − z1)]

F1z =
p

6
[(x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x1)]

The contribution of this e�ect to the sti�ness matrix is calculated through the derivatives of
the forces. The derivatives of F1 is

F′1 = (12′ ∧ 13+ 12 ∧ 13′)p
6

The derivatives of F1, F2, and F3 are identical:

∂F1

∂x1
=
p

6

0
z3 − z2

y2 − y3

∂F1

∂y1
=
p

6

z2 − z3

0
x3 − x2

∂F1

∂z1
=
p

6

y3 − y2

x2 − x3

0

∂F1

∂x2
=
p

6

0
z1 − z3

y3 − y1

∂F1

∂y2
=
p

6

z3 − z1

0
x1 − x3

∂F1

∂z2
=
p

6

y1 − y3

x3 − x1

0

∂F1

∂x3
=
p

6

0
z2 − z1

y1 − y2

∂F1

∂y3
=
p

6

z1 − z2

0
x2 − x1

∂F1

∂z3
=
p

6

y2 − y1

x1 − x2

0
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3.3.7 Dynamic: force of inertia

The force of inertia is related to accelerations of the net and of the water particles just around
the net. The calculation is done for each triangular element in three parts, one for each vertex,
since the acceleration is not constant over the entire surface of each triangular element. Under
these conditions, the parameters are local parameters at each vertex, including the acceleration
and the mass. The mass per vertex is considered the third of the total mass of netting of the
triangular element.

The force of inertia on each vertex of a triangular element mesh is estimated by (Hallam
1977):

Fi = Ma(γh − γ) + ρV γh −Mγ

Fi: inertial force on the vertex i (N),
Ma: added mass (kg) of 1/3 of the triangular element,
M : mass of 1/3 of the net (kg),
V : volume of 1/3 of the net (m3),
ρ : density of water (kg/m3),
γ: acceleration of the vertex (m/s2),
γh: acceleration of the water around the vertex (m/s2).

The vertex speed is calculated as follows:

v =
x1 − x

∆t
The acceleration of the vertex is

γ =
v1 − v

∆t
which gives

γ =
x2 − 2x1 + x

∆t2

In this case, the contribution to the sti�ness matrix, from the derivative of this inertia, is
calculated by

−F ′ = −∂Fi
∂x

which leads to

−F ′ = (M +Ma)
∂γ

∂x
and

−F ′ =
M +Ma

∆t2

With: x: position at t (m),
x1: position at t−∆t (m),
x2: position at t− 2∆t (m),
F ′: derivative of the force of inertia relative to the position(N/m),
∆t: time step (s).
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3.3.8 Dynamic: drag force

The drag is related to the net and the relative speed of water particles just around the net. The
calculation is done for each triangular element in three parts, one for each vertex, since this
speed is not constant over the entire surface of each triangular element. Under these conditions
the local parameters at each vertex are the vertex speed and one third of the number of twine
vectors for the triangular element. The calculation is done for twines U and V .

The formulation for the twine drag is based on the assumptions of Landweber and Richtmeyer,
as described earlier (section 3.3.3, page 47). The drag on the U twines applied on vertex i of
the triangular element takes into account 1/3 of the number of U twine vectors in the triangular
element. This drag is as follows:

|Fi| =
d

6

1

2
ρCdDlo(|ci|sin(θ))2

|Ti| =
d

6
f

1

2
ρCdDlo(|ci|cos(θ))2

Fi: normal force to the twines (N) on vertex i, this expression coming from the assumptions
of Landweber,

Ti: tangential force (N) on vertex i, from Richtmeyer's assumption,
ρ: density of water (kg/m3),
Cd: normal drag coe�cient,
f : tangential coe�cient,
D: diameter of twines U (m),
lo: length of twine vectors U (m),
ci: amplitude of the relative velocity of the water at vertex i (m/s),
θ: angle between the twine vectors U and the relative velocity (radians),
d
6 : one third of the number of twine vectors U in the triangular element.

The angle θ between the twine vector U and the relative velocity is calculated by

cos(θ) =
ciU

|ci||U|
The directions of the drag in case of twine vector U are as follows:

Fi

|Fi|
=

U

|U|
∧ ci ∧U
|ci||U|

Ti

|Ti|
=

Fi

|Fi|
∧ ci ∧U
|ci||U|

The drag amplitude on twines V is calculated following the same scheme.
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3.3.9 Buoyancy and weight

Buoyancy and weight are vertical forces (along the z axis, if it is the vertical axis). Their
expression is summed in the following:

Fz = dπ
D2

4
l0(ρnetting − ρ)g

Fz: weight of the net once immersed (N),
d: number of twine vectors U and twine vectors V per triangular element,
ρ: water density (kg/m3),
ρnetting: net density (kg/m3),
D: diameter of twines (m),
g: gravity of the Earth (around 9.81m/s2),
l0: length of twine vectors (m).

The length of the twine vectors is approximated by the unstretched twine vector l0, since the
elongation is generally quite small.

There is a contribution of this force to the sti�ness matrix when the netting crosses the water
surface. In this case there is a variation of force with the immersion. This contribution is not
described here.
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Contact between knots

It happens quite frequently that the nets are so close that the nodes come into contact with each
other. This contact limits the closing of mesh (Figure 3.18).

Figure 3.18: Comparison between simulations (net) and �ume tank tests (crosses) of trawl cod-
ends (Anon 1999). Between 2.5 and 3.5 m the diameter is constant. This is due to contact
between the nodes of the net.

An e�ort similar to that described in section 3.3.4 (page 56) has been introduced to take into
account this feature. This e�ort appears only when the twines are close enough, that is, when
the angle between U and V twines is below a critical angle (αmini). This angle is related to the
node size and mesh side as follows (Figure 3.18):

αmini = 2 arcsin

[
knotsize

2meshside

]
αmini: limit angle of contact between twines (rad),
knotsize: size of the node (m),
meshside: side of the mesh or length of twine vectors (m).

The meshside could be the length of the twine vector along the U twine (|U|) or the length
of the twine vector along the V twine (|V|). To avoid this choice (between |U| and |V|), this
length can be approximated by the unstretched length l0 of the twine vector.

A couple is generated between the twines if the angle between them is less than the minimal
angle: {

C = H(α− αmini) if α <= αmini
C = 0 if α > αmini

C: couple between the twines due to the contact between knots (Nm),
α: angle between twines U and V (rad),
H: sti�ness (Nm/Rad).

This sti�ness is not well known. Therefore, arbitrary values can be used, such as the following,
proportional to the elongation sti�ness of the twine (EA):

H =
1

100

mesh2
sideEA

knotsize
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Figure 3.19: The size of the knot limits the closure of the mesh. The minimal angle between
twines is due to the size of the knot and the side of the mesh (which is also the length of twine
vector).

A: section of the twine (m2),
E: Young's modulus (Pa).

The forces on the vertices of triangular elements and the sti�ness use the same expressions
as those described in section 3.3.4 (page 56).
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4.1 Principle

The cables are split into bar elements (Figure 4.1). The greater the number of bars, the better
the representation of the curvature.

From the position X of the extremities of the bar elements the forces F on these extremities
are calculated. The bar elements, in the present modelling, respect a couple of hypotheses. The
�rst is that the bar element is straight. The second is that the bar element is elastic. These
hypotheses make possible the calculation of forces on the extremities of the bar element.

Figure 4.1: View of three cables split into bar elements. The nodes number are noted.
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4.2 Tension on bars

4.2.1 Force vector

The forces on the extremities of the bar elements are due to the tension in the bar (Figure 4.2).

Figure 4.2: Tension forces F1 and F2 on the extremities of the bar due to its tension.

If the position of the extremities are noted 1 and 2, the length of the bar is:

l =
√
12.12

With:

12 =
x2 − x1

y2 − y1

z2 − z1

The tension in the bar is:

|F| = l − l0
l0

EA

E : Young's modulus of the material (N/m2),
A : mechanical section of the cable (m2),
lo : unstretched length of the bar element (m).

The force vectors on the two extremities of the bar are

F1 = |F|21
l

F2 = |F|12
l

The components of these forces are:

F1x = |F|x1 − x2

l

F1y = |F|y1 − y2

l
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F1z = |F|z1 − z2

l

F2x = |F|x2 − x1

l

F2y = |F|y2 − y1

l

F2z = |F|z2 − z1

l

4.2.2 Sti�ness matrix

The sti�ness matrix is as follows:

K =



−∂F1x

∂x1
−∂F1x

∂y1
−∂F1x

∂z1
−∂F1x

∂x2
−∂F1x

∂y2
−∂F1x

∂z2

−∂F1y

∂x1
−∂F1y

∂y1
−∂F1y

∂z1
−∂F1y

∂x2
−∂F1y

∂y2
−∂F1y

∂z2

−∂F1z

∂x1
−∂F1z

∂y1
−∂F1z

∂z1
−∂F1z

∂x2
−∂F1z

∂y2
−∂F1z

∂z2

−∂F2x

∂x1
−∂F2x

∂y1
−∂F2x

∂z1
−∂F2x

∂x2
−∂F2x

∂y2
−∂F2x

∂z2

−∂F2y

∂x1
−∂F2y

∂y1
−∂F2y

∂z1
−∂F2y

∂x2
−∂F2y

∂y2
−∂F2y

∂z2

−∂F2z

∂x1
−∂F2z

∂y1
−∂F2z

∂z1
−∂F2z

∂x2
−∂F2z

∂y2
−∂F2z

∂z2


The sti�ness matrix is calculated through the derivatives of force components. For the �rst

component that gives:

−∂F1x

∂x1
= −

[
EA
l0

∂l
∂x1

(x1 − x2) + |F|∂(x1−x2)
∂x1

]
l − |F|(x1 − x2) ∂l

∂x1

l2

with

∂l

∂x1
=
x2 − x1

l

That gives for the 36 components:

−∂F1x

∂x1
=
∂F1x

∂x2
=
∂F2x

∂x1
= −∂F2x

∂x2
=
EA

l3lo

[
l3 − l2lo+ lo(x2 − x1)2

]
−∂F1y

∂y1
=
∂F1y

∂y2
=
∂F2y

∂y1
= −∂F2y

∂y2
=
EA

l3lo

[
l3 − l2lo+ lo(y2 − y1)2

]
−∂F1z

∂z1
=
∂F1z

∂z2
=
∂F2z

∂z1
= −∂F2z

∂z2
=
EA

l3lo

[
l3 − l2lo+ lo(z2 − z1)2

]

−∂F1x

∂y1
= −∂F1y

∂x1
= −∂F2y

∂x2
= −∂F2x

∂y2
=
∂F2y

∂x1
=
∂F2x

∂y1
=
∂F1y

∂x2
=
∂F1x

∂y2
=
EA

l3
[(x2 − x1)(y2 − y1)]

−∂F1x

∂z1
= −∂F1z

∂x1
= −∂F2z

∂x2
= −∂F2x

∂z2
=
∂F2z

∂x1
=
∂F2x

∂z1
=
∂F1z

∂x2
=
∂F1x

∂z2
=
EA

l3
[(x2 − x1)(z2 − z1)]

−∂F1y

∂z1
= −∂F1z

∂y1
= −∂F2z

∂y2
= −∂F2y

∂z2
=
∂F2z

∂y1
=
∂F2y

∂z1
=
∂F1z

∂y2
=
∂F1y

∂z2
=
EA

l3
[(y2 − y1)(z2 − z1)]
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4.3 Bending of cables

Cables could have a resistance in bending, such as beams. Beam deformation relates the curvature
of the beam to the couple, such as:

Co =
EI

R

Co: the couple on any point of the cable (N.m),

EI: the bending rigidity of the cable (N.m2),

R: the radius of the cable at the point (m).

To take into account this behaviour in the numerical model, the cables are split into bar
elements (Figure 4.3). In case of bending sti�ness, there is a couple Co between consecutive bar
elements (Figure 4.4). This couple leads to forces on the extremities of theses two elements.

Figure 4.3: The cable is embedded at top right. It is modelled with bar elements. Each bar is
straight and articulated with its neighbour.

4.3.1 Force vector

The forces on the extremities of two consecutive bar elements are due to the bending between
the bar elements (Figure 4.4).

The curvature is approximated by the circle passing by the extremities of the two bar elements.
The positions of the extremities of the bars allow assessment of this radius (Figure 4.5). From
this radius, and if the bending rigidity is known, the model is able to calculate the couple:

Co =
EI

R

The radius (R) is calculated from the position of the extremities:
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Figure 4.4: Representation of two consecutive bars. A couple is introduced to take into account
the bending rigidity of the cable. The spring symbolizes the couple.

Figure 4.5: The radius of the curvature is assessed by the circle passing by the extremities of the
two bar elements.

R =
ABC

4
√
p(p−A)(p−B)(p− C)

A (B): length of the �rst (second) bar (m),
C: distance between the extremities 1 and 3 in Figure 4.5 (m),
p: the half perimeter (m), where

p =
A+B + C

2

Once the couple Co is calculated, the model assesses the forces on the extremities of the bars
using the virtual work principle.

The force component along X on the extremity 1 of the �rst bar element is estimated by
considering a virtual displacement (∂x1) along the axis x of the extremity 1 (Figure 4.6). This
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displacement leads to an external work, considering ∂x1 small and consequently Fx1 constant:

We = Fx1∂x1

This virtual displacement also induces a change in the angle (α) between bar elements.

Figure 4.6: A virtual displacement (∂x1) leads to an external work (Fx1∂x1) equal to the internal
work (Co∂α).

This virtual displacement leads to a variation of angle between bars (∂α), and this variation
of angle generates an internal work. If ∂x1 is small, ∂α is small and consequently Co is constant.
That gives

Wi = Co∂α

Because the forces on the extremities of the two bar elements represent the couple Co there
is equality between the works. That leads to:

Fx1 = Co
∂α
∂x1 Fx2 = Co

∂α
∂x2 Fx3 = Co

∂α
∂x3

Fy1 = Co
∂α
∂y1 Fy2 = Co

∂α
∂y2 Fy3 = Co

∂α
∂y3

Fz1 = Co
∂α
∂z1 Fz2 = Co

∂α
∂z2 Fz3 = Co

∂α
∂z3

These forces components are:

Fx1 =
EI

R sinα

[
(x2− x1)AB

A3B
+
x2− x3

AB

]
Fy1 =

EI

R sinα

[
(y2− y1)AB

A3B
+
y2− y3

AB

]
Fz1 =

EI

R sinα

[
(z2− z1)AB

A3B
+
z2− z3
AB

]
Fx2 =

EI

R sinα

[
(x1− x2)AB

A3B
+

(x3− x2)AB

AB3
+
x3− 2x2 + x1

AB

]
Fy2 =

EI

R sinα

[
(y1− y2)AB

A3B
+

(y3− y2)AB

AB3
+
y3− 2y2 + y1

AB

]
Fz2 =

EI

R sinα

[
(z1− z2)AB

A3B
+

(z3− z2)AB

AB3
+
z3− 2z2 + z1

AB

]
Fx3 =

EI

R sinα

[
(x2− x3)AB

AB3
+
x2− x1

AB

]
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Fy3 =
EI

R sinα

[
(y2− y3)AB

AB3
+
y2− y1

AB

]
Fz3 =

EI

R sinα

[
(z2− z3)AB

AB3
+
z2− z1
AB

]
On vectorial form:

F1 =
EI

ABR sinα

[
A.AB

A2
−B

]
F2 =

EI

ABR sinα

[
−A.AB

A2
+
B.AB

B2
+B−A

]
F3 =

EI

ABR sinα

[
−B.AB

B2
+A

]
With:
F1 (F2, F3): force on the node 1 (2, 3),
AB: scalar product between the two bar vectors,
A (B): vector along the �rst (second) bar element,
A (B): length of the �rst (second) bar element (m),
x1 to z3: the Cartesian coordinates of the three extremities of the two bar elements (m).

4.3.2 Sti�ness matrix

The sti�ness matrix is calculated with the derivatives of the force components (Fx1 to Fz3)
relative to the positions (x1 to z3). This means that the sti�ness matrix has 81 components.
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4.4 Drag on cables

Introduction

The drag force on cables is calculated in this model as the contribution of the drag force on each
bar elements. The formulation for the drag is based on the assumptions of Morrison, as adapted
by Landweber and Richtmeyer (see section 3.3.3 page 47).

The drag amplitudes on bar element used in the model (Figure 4.7) are

|F| = 1

2
ρCdDl0 [|c|sin(α)]

2

|T| = f
1

2
ρCdDl0 [|c|cos(α)]

2

The directions of the drag are as follows:

F

|F|
=

B ∧ (c ∧B)

|B ∧ (c ∧B)|

T

|T|
=

F ∧ (c ∧ F)

|F ∧ (c ∧ F)|

F: normal drag (N), following the assumptions of Landweber,
T: tangential drag (N), Richtmeyer hypothesis,
B: bar element vector,
ρ: density of water (kg/m3),
Cd: normal drag coe�cient,
f : tangential drag coe�cient,
D: diameter of the bar element (m),
l0: length of the bar element (m),
c: water velocity relative to the bar element (m/s),
α: angle between the bar element and the water velocity (radians).

In the equations of drag amplitude, the expressions |c|sin(α) and |c|cos(α) are the normal
and tangential projections on c along the bar element vector.

The length of the bar element used in the formulation of drag amplitude could be assessed by
|B|. That would mean it takes into account the bar element elongation. Generally speaking, a
bar elongation is associated with a diameter D reduction by the Poisson coe�cient. Because this
Poisson coe�cient is not taken into account in the present modelling, the bar element surface is
approximated by Dl0, where D is the diameter of the bar and l0 is the unstretched length of the
bar element vectors.

All parameters, including the angle α are constant and known for each bar element. Therefore,
the drag can be calculated for each bar element. The drag force for a bar element is spread over
the two vertices of the element at 1/2 per vertex.

De�nitions of the variables

The Cartesian coordinates of the two nodes (1, 2) of the bar element are the following:

1 =
x1

y1

z1
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Figure 4.7: Normal (F) and tangential (T) forces on a bar element due to the velocity of water
(c).

2 =
x2

y2

z2

The vector bar element is as follows:

B =
x2 − x1

y2 − y1

z2 − z1

The vector current is

c =
cx
cy
cz

Generally speaking, cz is null.
The angle between current and B is

cos(α) =
c.B

|c||B|

Evaluation for the sti�ness of the normal force

The normal force on B is

F = |F| B ∧ (c ∧B)

|B ∧ (c ∧B)|
That means that the x y and z components are:

Fx = |F|Ex
|E|
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Fy = |F|Ey
|E|

Fz = |F|Ez
|E|

With:

E = B ∧ (c ∧B)

and

E =
Ex
Ey
Ez

The x component of the derivative is

F′x = |F|′Ex
|E|

+ |F|E
′
x|E| −Ex|E|′

|E|2

Which gives for the x y and z components:

F′x = |F|′Ex
|E|

+
|F|
|E|2

{
E′x|E| −

Ex

|E|
(ExE

′
x +EyE

′
y +EzE

′
z)

}
F′y = |F|′Ey

|E|
+
|F|
|E|2

{
E′y|E| −

Ey

|E|
(ExE

′
x +EyE

′
y +EzE

′
z)

}
F′z = |F|′Ez

|E|
+
|F|
|E|2

{
E′z|E| −

Ez

|E|
(ExE

′
x +EyE

′
y +EzE

′
z)

}
For this assessment the derivative of E is required:

E′ = B′ ∧ (c ∧B) +B ∧ (c ∧B′)

This leads to

E′ = 2(B′.B)c− (B′.c)B− (B.c)B′

which is

E′x = 2(B′.B)cx − (B′.c)Bx − (B.c)B′x

E′y = 2(B′.B)cy − (B′.c)By − (B.c)B′y

E′z = 2(B′.B)cz − (B′.c)Bz − (B.c)B′z

with

B′.B = BxB
′
x +ByB

′
y +BzB

′
z

B′.c = cxB
′
x + cyB

′
y + czB

′
z

B.c = Bxcx +Bycy +Bzcz

The derivative of the amplitude of the normal force is
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|F|′ =
1

2
ρCdDl0|c|2

(
[sin(α)]2

)′
which is

|F|′ = ρCdDl0|c|2cos(α)sin(α)α′

The derivative of α is

α′ =
−1√

1− ( c.B
|c||B| )

2

[
c.B

|c||B|

]′
That gives

α′ =
−1√

1− ( c.B
|c||B| )

2

[
c

|c|
.

(
B

|B|

)′]

The derivative of the bar element direction is(
B

|B|

)′
=
B′|B| −B|B|′

|B|2

That means that the derivative of α is

α′ =
−1√

1− ( c.B
|c||B| )

2

(
c

|c|

)
.

(
B′|B| −B|B|′

|B|2

)
or

α′ =
−1

|B|2|c| sinα
{
|B|
[
cxB

′
x + cyB

′
y + czB

′
z

]
− (c.B)|B|′

}
In this case B′x is the component along x of B′.
The derivative of vector B is

B′ =
B′x
B′y
B′z

which is

∂Bx
∂x1

=
∂By
∂y1

=
∂Bz
∂z1

= −1

∂Bx
∂x2

=
∂By
∂y2

=
∂Bz
∂z2

= 1

∂Bx
∂y1

=
∂Bx
∂y2

=
∂Bx
∂z1

=
∂Bx
∂z2

= 0

∂By
∂z1

=
∂By
∂z2

=
∂By
∂x1

=
∂By
∂x2

= 0

∂Bz
∂x1

=
∂Bz
∂x2

=
∂Bz
∂y1

=
∂Bz
∂y2

= 0
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On vector form and for the nine coordinates of the triangular element it is

∂B

∂x1
=
−1
0
0

∂B

∂y1
=

0
−1
0

∂B

∂z1
=

0
0
−1

∂B

∂x2
=

1
0
0

∂B

∂y2
=

0
1
0

∂B

∂z2
=

0
0
1

The derivative of the norm of vector B is

|B|′ =
BxB

′
x +ByB

′
y +BzB

′
z

|B|

Which gives for the nine coordinates of the triangular element:

∂|B|
∂x1

=
−Bx
|B|

∂|B|
∂y1

=
−By
|B|

∂|B|
∂z1

=
−Bz
|B|

∂|B|
∂x2

=
Bx
|B|

∂|B|
∂y2

=
By
|B|

∂|B|
∂z2

=
Bz
|B|
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Evaluation for the sti�ness of the tangential force

The tangential force on the bar element is

T = |T| F ∧ (c ∧ F)

|F ∧ (c ∧ F)|
Following the de�nition of F:

T = |T| [B ∧ (c ∧B)] ∧ {c ∧ [B ∧ (c ∧B)]}
| [B ∧ (c ∧B)] ∧ {c ∧ [B ∧ (c ∧B)]} |

It follows:

T = |T| [(B.B)(c.c)− (B.c)2](B.c)B

|[(B.B)(c.c)− (B.c)2](B.c)B|
or

T = |T| [|B|2|c|2 − (|B||c|cosα)2]|B||c|cosαB
|[|B|2|c|2 − (|B||c|cosα)2]|B||c|cosαB|

and

T = |T| cosαB

| cosα||B|
The x y and z components are:

Tx = |T| cosαBx
| cosα||B|

Ty = |T| cosαBy
| cosα||B|

Tz = |T| cosαBz
| cosα||B|

The derivative of Tx is:

T′x = |T|′ cosαBx
| cosα||B|

+ |T| (cosαBx)′| cosα||B| − cosαBx(| cosα||B|)′

(| cosα||B|)2

T′x = |T|′ cosαBx
| cosα||B|

+
|T|

| cosα||B|
(cosαB′x − sinαα′Bx)

− |T| cosαBx
(| cosα||B|)2

[
| cosα|

BxB
′
x +ByB

′
y +BzB

′
z

|B|
− cosα

| cosα|
sinαα′|B|

]

T′x = |T|′Tx
|T|

+
|T|

| cosα||B|
(cosαB′x − sinαα′Bx)

− Tx

| cosα||B|

[
| cosα|

BxB
′
x +ByB

′
y +BzB

′
z

|B|
− cosα

| cosα|
sinαα′|B|

]
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T′y = |T|′Ty
|T|

+
|T|

| cosα||B|
(cosαB′y − sinαα′By)

− Ty

| cosα||B|

[
| cosα|

BxB
′
x +ByB

′
y +BzB

′
z

|B|
− cosα

| cosα|
sinαα′|B|

]

T′z = |T|′Tz
|T|

+
|T|

| cosα||B|
(cosαB′z − sinαα′Bz)

− Tz

| cosα||B|

[
| cosα|

BxB
′
x +ByB

′
y +BzB

′
z

|B|
− cosα

| cosα|
sinαα′|B|

]

The derivative of the amplitude of the tangential force is

|T|′ = f
1

2
ρCdDl0|c|2

(
[cos(α)]2

)′ d
2

which is

|T|′ = −d
2
fρCdDl0|c|2cos(α)sin(α)α′
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Chapter 5

The node element

87
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5.1 Principle

The contact of a marine structure with the sea bed has to be taken into account. It is of great
importance for structures such as chains lying on the sea-bed or bottom trawls.

In the following sections a few forces related to this contact are described.



5.2. CONTACT ON BOTTOM 89

5.2 Contact on bottom

In this model, the main hypothesis for these contact forces is that the bottom is elastic. That
means that if a node is in contact with the bottom, the force reaction (N) is equal to the product
of the node depth (m) in the soil by the soil sti�ness (N/m).

5.2.1 Force vector

The vertical force on a node due to its potential contact with the bottom is

ifz < Zb Fz = Bk(Zb − z)
ifz ≥ Zb Fz = 0

With:
Fz: the vertical force on the node (N),
Bk: the bottom sti�ness (N/m),
Zb: the vertical position of the bottom (m),
z: the vertical position of the node (m).

5.2.2 Sti�ness matrix

ifz < Zb −∂Fz

∂z = Bk

ifz ≥ Zb −∂Fz

∂z = 0
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5.3 Drag on bottom

Contact of a node with the bottom could lead to a wearing force. This force is taken into account
when there is a movement of the structure on the bottom. This wearing depends on the depth
on which the node digs the bottom, on the bottom sti�ness, and on the node speed displacement
on the bottom.

5.3.1 Force vector

As mentioned earlier (section 5.2, page 89), the vertical force on a node due to its contact (z < Zb)
to the bottom is:

Fc = Bk(Zb − z)

With:
Fc: the vertical force on the node (N),
Bk: the bottom sti�ness (N/m),
Zb: the vertical position of the bottom (m),
z: the vertical position of the node (m).

The drag force on the bottom has been modelled as a function of the displacement speed of
the node on the bottom. Figure 5.1 shows this relation.

Figure 5.1: Example of amplitude of wearing force |F| depending on the node displacement speed
on the bottom |V|.
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if |V| < Vl |F| = FcBf
|V|
Vl

if |V| ≥ Vl |F| = FcBf

With:

V =
Vx
Vy
Vz

The components of speed are calculated as follows:

Vx =
x− xp

∆t

Vy =
y − yp

∆t

Vz =
z − zp

∆t
Vx (Vy, Vz): component of the speed of the node along the x (y, z) axis (m/s),
x (y, z): coordinate of the node along the x (y, z) axis (m) calculated at time t,
xp (yp, zp): previous coordinate of the node along the x (y, z) axis (m) calculated at time

t−∆t.

Two cases are de�ned: a high-speed case (|V| ≥ Vl) and a low-speed case (|V| < Vl). The
wearing force is calculated in the two cases such as there is continuity between the two cases (at
|V| = Vl).

High-speed

In this case, |V| ≥ Vl.
That means that the components of this force are the following:

Fx = −FcBf
Vx
|V|

Fy = −FcBf
Vy
|V|

Fz = −FcBf
Vz
|V|

Low-speed

In this case, |V| < Vl.
That means that the components of this force are the following:

Fx = −FcBf
Vx
Vl

Fy = −FcBf
Vy
Vl

Fz = −FcBf
Vz
Vl
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5.3.2 Sti�ness matrix

High-speed

∂Fx
∂x

= −FcBf
|V|2

∂Vx
∂x

[
|V| − V 2

x

|V|

]
∂Fx
∂y

= −FcBf
|V|2

∂Vy
∂y

[
−VxVy
|V|

]
∂Fx
∂z

= BkBf
Vx
|V|
− FcBf
|V|2

[
−VxVz
|V|

∂Vz
∂z

]
∂Fy
∂x

=
FcBf
|V|2

[
VxVy
|V|

∂Vx
∂x

]

∂Fy
∂y

= −FcBf
|V|2

∂Vy
∂y

[
|V| −

V 2
y

|V|

]

∂Fy
∂z

= BkBf
Vy
|V|
− FcBf
|V|2

[
−VxVz
|V|

∂Vz
∂z

]
∂Fz
∂x

=
FcBf
|V|2

[
VxVz
|V|

∂Vx
∂x

]
∂Fz
∂y

=
FcBf
|V|2

[
VyVz
|V|

∂Vy
∂y

]

∂Fz
∂z

= BkBf
Vz
|V|
− FcBf
|V|2

[
∂Vz
∂z
|V| − V 2

z

|V|
∂Vz
∂z

]
With:

∂Vx
∂x

=
1

∆t

∂Vy
∂y

=
1

∆t

∂Vz
∂z

=
1

∆t

The sti�ness matrix becomes:

K = − BfFc
|V|2∆t


V 2
x

|V| − |V|
VxVy

|V|
VxVz

|V|
VxVy

|V|
V 2
y

|V| − |V|
VyVz

|V|
VxVz

|V|
VyVz

|V|
V 2
z

|V| − |V|

− BfBk
|V|

0 0 Vx
0 0 Vy
0 0 Vz
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Low-speed

∂Fx
∂x

= −FcBf
Vl

∂Vx
∂x

∂Fx
∂y

= 0

∂Fx
∂z

= BkBf
Vx
Vl

∂Fy
∂x

= 0

∂Fy
∂y

= −FcBf
Vl

∂Vy
∂y

∂Fy
∂z

= BkBf
Vy
Vl

∂Fz
∂x

= 0

∂Fz
∂y

= 0

∂Fz
∂z

= BkBf
Vz
Vl
− FcBf

Vl

∂Vz
∂z

The sti�ness matrix becomes:

K =
Bf
Vl

 Fc

∆t 0 −BkVx
0 Fc

∆t −BkVy
0 0 −BkVz + Fc

∆t





94 CHAPTER 5. THE NODE ELEMENT



Chapter 6

Validation

Several simulations are presented here. They are compared with �ume tank tests, sea trials, and
other models.

95
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6.1 Tractrix

The shape of the meridian of a cylinder of netting of inextensible twines held between two circular
rings is a tractrix.

In the case of a cylinder of stretched netting of 100 meshes around, 50 meshes along, a radius
of 1m at one extremity and 0.048599m at the other, and a mesh side of 0.05m, the shape is as
displayed in Figure 6.1 (O'Neill and Priour, 2009).

The accuracy of the model depends on the number of nodes used (Table 6.1). The model
uses 32 to 662 nodes and two planes of symmetry.

Figure 6.1: Cylinder of inextensible netting held between two circular rings.

Table 6.1: Tractrix shape and accuracy of the model, where x and y are the analytical solution;
x is along the axis and y is radial. The accuracy on y depends on the number of nodes in the
model (from 32 to 662).

x (m) y (m) 662 298 84 32
0 1

0.403501 0.739032 0.02% 0.22% 1.4% -1.1%
0.844094 0.546168 0.00% 0.19% 1.2% -2.7%
1.303628 0.403636 -0.01% 0.14% 1.0% -1.8%
1.773173 0.2983 0.00% 0.19% 1.5% -2.3%
2.248093 0.220453 -0.02% 0.17% 1.3% -2.4%
2.725923 0.162922 -0.03% 0.15% 1.0% -3.6%
3.205334 0.120404 -0.07% 0.18% 1.0% -2.8%
3.685607 0.088983 -0.11% 0.17% 0.6% -3.2%
4.166349 0.065761 -0.15% 0.16% 0.2% -1.9%
4.647348 0.048599
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6.2 Diamond mesh netting stretched by its weight

This check is done by comparing the results of the model based on triangular elements with a
model where each twine is modelled by an elastic bar. This comparison is taken from Priour
(1999).

The mesh panel is square and consists of 1600 meshes. The elongation rigidity (EA)of the
twines is 10000N , their diameter is 0.01m, the side of the mesh is 1.2m, the length of the upper
edge is 32m, and the density of the net is 2000kg/m3.

The model uses 1050 triangular elements and 512 nodes with a vertical plane of symmetry
(Figures 6.2 and 6.3b). The comparison is made with a reference model where each side of mesh
(twine vector) is modelled with an elastic bar (Figure 6.3a). This reference model uses 3136 bars
and 1625 nodes with a plane of symmetry. The forms calculated by the two models are quite
similar (Figure 6.3).

The forces involved here are the netting weight and the twine tension (sections 3.3.9 page 67
and 3.3 page 37).

(a) (b)

Figure 6.2: Calculation of the shape of a net held by its top border. The initial shape of the
model is unbalanced (a) and the �nal one is balanced (b). Only the triangular elements are
represented.
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(a) (b)

Figure 6.3: Equilibrium of a net held by its top edge and stretched by its own weight: (a) model
where each twine is modelled as an elastic bar; (b) model using triangular elements, with only
the twines drawn.
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6.3 Hexagonal mesh net held vertically in the current

The results of the model using triangular elements for netting with hexagonal meshes are com-
pared with those of a model using bar elements for each twine. The mesh panel is square and
consists of 18 by 33 meshes and 3564 twines. The elongation rigidity of the twines is 3000N and
0.0003N in compression. The diameter of the twines is 1mm, and their length is 19mm. The
length of each edge is 1m. The density of the material is considered equal to that of sea water
(1025kg/m3). The net is held by its four edges perpendicular to a current of 1m/s of sea water.

The �rst model uses 924 triangular elements and 495 nodes (Figures 6.4a and 6.4b), whereas
the second model uses 3564 bars and 2446 nodes (Figure 6.4c).

The results of the two models are similar. The maximum displacement is 0.182m for the �rst
model and 0.184m for the second. The drag force is 54.10N for the �rst and 54.04N for the
second.

Convergence is obtained in 29 iterations with the �rst model compared with 296 iterations
for the second model. This acceleration is related to the reduction in the number of nodes in the
model using triangular elements.

This comparison is based on Priour (2002).

(a) (b) (c)

Figure 6.4: Equilibrium of a net held by its four edges in a current perpendicular: (a) the twines
in the model using triangular elements; (b) the triangular elements; (c) the twines in the model
using bar elements. The shapes are similar.
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6.4 Hydrostatic pressure

The results of the model using triangular elements are compared with measurements made by
O'Neill and O'Donoghue (1997). These measures involve a net bag partially �lled with water
bags (Figure 6.5). The pressure from the weight of the bags is implemented as in section 3.3.6
(page 63), but in this case the pressure is modelled as a hydrostatic pressure:

p = ρgh

p: pressure exerted by the catch on the net (Pa),
ρ : density of water (kg/m3),
g: gravity (9.81m/s2),
h: height in relation to the upper limit of the catch (m).
The test conditions are as follows:
Mesh size: 37.2mm,
Number of meshes around: 50,
Number of meshes along: 50,
Catch volume: 0.0265m3,
Catch density (ρ): 1000kg/m3,
Radius of the hoop above: 0.25m
The model uses 742 nodes, 1360 triangular elements, one bar for closing the netting at the

bottom, and two symmetry planes. This comparison comes from Priour (2005).

(a) (b)

Figure 6.5: Bag of netting with 26.5kg of water. Comparison between measurements (a) and the
model using triangular elements (b). Only twines are shown in (b)
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6.5 Cod-end with catch in the current

A cod-end is the backmost part of a trawl where the catch of �sh builds up. The results of the
model are compared with measurements made in test tank on cod-ends partially �lled with water
(Anon. 1999). The pressure of the catch is implemented here as follows (see section 3.3.6, page
63):

p =
1

2
ρCdv

2

p: catch pressure on the net (Pa),
ρ : density of water (kg/m3),
Cd: drag coe�cient (1.4),
v: current amplitude (m/s).
The distance between the front of the catch and the extremity of the cod-end is inserted into

the model as data because this distance was measured during the tests. Figure 6.6 shows the
model output (net) and the �ume tank measurements (cross). The comparison shows that the
model gives a pretty good description of the cod-end with the catch.

Figure 6.6: Comparison of �ume tank tests (cross) and the numerical model outputs (mesh) for
a scale (1/3) model of North Sea cod-end with 300kg of catch.
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6.6 Full cod-end

A long and full cod-end subject to constant internal pressure presents a maximal diameter. This
maximal diameter depends on the number of meshes around N and the mesh side m by the
following analytical equation (O'Neill and Priour 2009):

Dmax = 4
Nm

π
√

6

In the case of a cod-end close at one extremity of 100 meshes around, 100 meshes along (N),
and a mesh side of 0.05m (m), the shape is as displayed in Figure 6.7.

The accuracy of the model on the maximal diameter is 0.015%.

Figure 6.7: Cod-end of netting subject to constant internal pressure.
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6.7 Bottom trawl

Several series of measurements on a bottom trawl were carried out during a sea trial on a French
vessel. The results of the numerical model were compared with these measurements (Priour
2012; Figure 6.8, Table 6.2).

The vessel was equipped with measurement systems suitable for trawling. Several measure-
ments were carried out:

• the position of the doors (immersion and distance),

• the distance between the headline and the bottom,

• the speed over ground and speed relative to the water,

• the warps and bridles tension.

Figure 6.8: Shape of the bottom trawl assessed by the model. Only 1 twine on 5 is drawn.

Table 6.2: Di�erences between tests at sea and simulation. SD: standard deviation.
Mean-SD Mean+SD Simulation

Warp tension (kg) 1966 3121 2300
Top bridle tension (kg) 864 1370 980

Bottom bridle tension (kg) 609 972 830
Vertical opening (m) 3.5 4.3 3.4

Measurements on the trawl are highly variable. The results of model calculation are generally
close to measured quantities.
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6.8 Cubic �sh cage

Tests were carried out on models of a �sh cage in the �ume tank of Boulogne/mer (Répécaud
and Rodier 1993). The cage consisted of 4 side panels of 23 horizontal by 26 vertical meshes and
a bottom panel of 23 by 23 meshes. The net had a mesh side of 35mm and a twine diameter of
2.2mm. The four bottom corners were tightened with 3kg of lead sinkers. The size of the cage
top was 1m by 1m. The water speed was 0.5m/s. Figure 6.9 compares the �ume tank test and
the simulation.

(a) (b)

Figure 6.9: Qualitative comparison between the deformation of a cubic cage in a �ume tank (a)
and simulation (b).
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6.9 Bending of cable

The model of bending of cables (section 4.3, page 75) is compared with a beam deformation
(Figure 6.10) in the thin beam theory. In this case the de�ection is well known. In case of a
cantilever the analytical equation of the de�ection is as follows:

y =
−Wl4

8EI

y: the vertical de�ection of the free extremity of the cantilever (m),
l: the length of the cantilever (m),
w: the linear weight of the cantilever (N/m),
EI: the bending rigidity (N.m2).

In case of a beam 1m long (l), with a density of iron (7800kg/m3), a diameter of 2cm, and a
rigidity (EI) of 164.93N.m2, the de�ection is 18.2mm.

Table 6.3 and Figure 6.11 show the vertical de�ection of the beam calculated with the model
in function of bar element number. The model is shown to be valid. The larger the number of
bar elements, the smaller the error.

Table 6.3: Vertical de�ection of the beam de�ection calculated with the model in function of bar
elements number and error relative to the analytical de�ection (18.2mm)

Number of bars 5 8 10 12 16 20 30 40
Simulated de�ection (mm) 18.9 18.5 18.4 18.3 18.3 18.3 18.2 18.2

Error % 4.0 1.5 0.97 0.67 0.36 0.23 0.082 0.039

Figure 6.10: Vertical de�ection of a beam calculated with the model. The beam is �xed on the
left and free to bend on its own weight on the right. The conditions are the same as in the text
except for the bending rigidity, which is (EI = 16.493N.m2), ten times less than the case of
Table 6.3 and Figure 6.11 to highlight the deformation.
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Figure 6.11: Error of the model relative to the analytical de�ection in function of the number of
bar elements.
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Appendix A10 
Warum funktioniert das Bacoma? 
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Appendix A11 
German pictures for roundfish escapement through 
square meshes of codends 

























 



 

 

 

Appendix A12 
FISKE MED SNURREVAD 



MTE- 2001   FISKE MED SNURREVAD #1 

RB Larsen, NFH-UiTø 

Fangstprinsippet (fly-shooting)  

Settefase Samle- 
fase 

Lukke- 
fase 

1 3 2 

1 

3 

2 



RB Larsen, NFH-UiTø 

TAU/ARMER: Det brukes utelukkende 
kombinasjonstau av polypropylen (syntetfiber) med 
kjerner av stål i norsk fiske. Dimensjonene varierer fra 
20-44 mm (diam.), med de tyngste tauene nærmest nota 
(vekt på opp mot 1.5 kg/m). 
 Ø 44 = 320 kg/kveil 
 Ø 42 = 280 kg/kveil      
 Ø 40 = 260 kg/kveil     
 Ø 36 = 225 kg/kveil  
 Ø 28 = 150 kg/kveil 
* 1 kveil tau = 120 favner (220 m) 
• På  40 - 50 fv. dyp brukes 4-5 kveiler tau,  
• på 150-200 fv. brukes 8-10 kveiler.  
 

MTE- 2001   FISKE MED SNURREVAD #2 



NOTA: Nota (i norsk fiske) er sammensatt av 4 like paneler 
og forlenget med relativt lange og høye vinger. Norske 
snurrevad har ikke tak (slik som trål har). Nota lages av PE, 
mens vinger kan være av PA. Sekken er (nesten alltid) av PA. 
Vi deler snurrevadnota inn i: 
 - Vingetamper (20-30 m) + børtre + tauarm  
 - Vinger 
 - Lask 
 - Belg  
 - Overgang (12-metring) og pose/fiskeløft 
  

RB Larsen, NFH-UiTø 

MTE- 2001   FISKE MED SNURREVAD #3 



RB Larsen, NFH-UiTø 

NOTSTØRRELSE: Det er mest vanlig å beskrive 
snurrevadets størrelse som antall masker (300 mm) i 
vingehøyde (ved overgang til lasken). Alternativt kan 
lengden på telnene brukes. Ved en antatt maskeåpning på 
θ= 0.4, vil følgende masketall (300 mm) gi vingehøyde på: 
 116# ≈14 m 
 180# ≈22 m 
 210# ≈25 m 
 240# ≈29 m 
 260# ≈31 m  
 280# ≈34 m  
 

 
 
TELNER:  Over- og undertelne (i norsk snurrevad) er like 
lange (i.e. intet tak). Standard lengde på telnene er 60-65 fv. 
(110-120 m). 
* Unntak: Lofotbestemmelser om maksimale størrelser: 
 1) Telner: Ikke over 67 fv. (123 m) 
 2) Omkrets: 144 m strukket lengde (=480# x 300 mm) 
* Lokale reguleringer  
 

MTE- 2001   FISKE MED SNURREVAD #4 



RB Larsen, NFH-UiTø 

MASKESTØRRELSE: Panelene bygges av lett PE 
fiber Ø1.8-2.5.  
 
 
 
1) Vingene: 300 mm (600 mm, eller langsgående tau) 
2) Lasken: 200 mm 
3) Belgen/forlengelsen: 150 mm 
4) Posen og fiskeløft:  
     * Nord av 64oN: 130 mm (125 mm i kvadratmaske) 
    * Sør av 64oN: 100 mm 
      * I Skagerak: 90 mm 
 
 
FLØYT/SYNK: Snurrevaden må ha en relativt stor 
netto underflotasjon;  
 * Små nøter ≈ 15-20 kg 
 * Større nøter ≈ 40-60++ kg  
 
Moderne rigginger omfatter tyngre ”skjørt” for å sikre 
bunnkontakt og å unngå slitasje på nota. 

MTE- 2001   FISKE MED SNURREVAD #5 



Konstruksjonstegning  
av en standard 180# 
snurrevad-not.  
Gjengitt med tillatelse  
av NOFI og hentet fra 
kandidatoppgaven til  
J. Vollstad (2003). 

RB Larsen, NFH-UiTø 

Konstruksjonstegning  
av en 116# Lofotnot 
(tegning fra 1980-
tallet).  

MTE- 2001   FISKE MED SNURREVAD #6 



RB Larsen, NFH-UiTø 

Den norske snurrevadnota 
har karakteristisk høge,  
relativt langer vinger. 
 
Belgen bygges av lett  
materiale (PE) og er  
alltid sammensatt av 
4 paneler (selv om  
konstruksjonstegninga 
viser bare 2 sider)      
 
  

Grunntelna på snurrevad  
må tilpasses ulike bunnforhold,  
som ”klenot” eller ”tampenot” 

Kle av kjetting eller naturfiber med  
blylodd brukes på fin sandbunn for  
å få fiskelinen helt ned til bunnen 
 

Under operasjon på de fleste  
fiskefelt (for torskefisk) må  
fiskelinen løftes et stykke fra  
bunnen vha av tamper ca. 1 favn 
lang (kjetting eller blytau-tamp) 

MTE- 2001   FISKE MED SNURREVAD #7 



Snurrevadens høyde på 
midten blir ca 30 meter 
med 1,7 knop. 
Snurrevadens totale vekt er 
ca 1880 Kg.  

RB Larsen, NFH-UiTø 

MTE- 2001   FISKE MED SNURREVAD #8 
Eksempel på en norsk snurrevad (260#x300 vingehøyde) med alle detaljer for 
konstruksjon og montering kopiert fra RHS, Roy Olsen på Gibostad 



RB Larsen, NFH-UiTø 

Arrangement (2004) på et vanlig kystfiskefartøy   

MTE- 2001   FISKE MED SNURREVAD #9 



RB Larsen, NFH-UiTø 

Den opprinnelige 
formen av snurrevad blir 
gjort ved at fartøyet 
ligger for anker under 
fangstoperasjonen.  
Bildet t.v. viser anker-
seining og operasjon i 
løpet av døgnet med 
skiftende strømretning. 
 
Den norske varianten av 
snurrevad opereres etter 
det skotske fly-shooting 
prinsippet: Første arm 
festes til en blåse og 
drivanker og armer og 
not samles ved å sige 
fartøyet framover 
samtidig som armene 
(og not) tromles inn. 
 
I Skottland hales nota 
motstrøms, mens vi i 
Norge haler medstrøms. 
Med medstrøms haling 
kan vi bruke større 
redskap.  

MTE- 2001   FISKE MED SNURREVAD #10 



RB Larsen, NFH-UiTø 

Eksempel på par-snurrevad 

MTE- 2001   FISKE MED SNURREVAD #10 



RB Larsen, NFH-UiTø 

Det er ingen tvil om at snurrevad under gitte betingelser er et meget  
effektivt fiskeredskap. Hos oss er det primært i fangst av torsk og  
hyse vi bruker snurrevad. Opprinnelig ble snurrevaden konstruert 
(i Danmark 1848) for fangst av rødspette. Det finnes eksempler på 
at snurrevad brukes til fangst av sei, sild og blåkveite (på store dyp)   
 

MTE- 2001   FISKE MED SNURREVAD #12 

Figuren over viser hvilket areal over bunn snurrevad og bunntrål ville 
dekke i løpet av 2,5 timer. Under forutsetning av fisk var uniformt fordelt 
og at sveipe-effekten (sveiper og tau) var 100%, så ville snurrevaden være 
nærmere 3 ganger så effektiv som bunntrålen. 



Hvorfor fanger snurrevaden  
mer selektivt på art og  
størrelse av fisk enn fisketrål?  

Denne snurrevad-posen er i deler av året 
påbudt i fisket i de nordlige områder 
 

RB Larsen, NFH-UiTø 
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(utdrag om bestemmelser  
for snurrevad pr J-154-2013): 
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Stor, moderne snurrevad 
under bygging på fabrikk 

Setting av not 

Triplex erstatter 
kraftblokk under 
haling 
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Moderne snurrevad med kraftige skjørt langs fiskeline  

Hva med fangstbehandling og kvalitet på slike fangster? 
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Bilder fra SINTEF F&H 2010: Et utvalg av typiske snurrevadfartøyer 



Bilder: SINTEF F&H 2010 

MTE- 2001   FISKE MED SNURREVAD #18 

RB Larsen, NFH-UiTø 

Dimensjon og vekt på de to tautromlene 
vil begrense hvor stor taumengde som 
kan brukes: Jo tykkere tau, desto kortere 
lengde vil kunne spoles inn.  
(Maks. lengde på armene/tauene er nå 
2000 m pr side).  

Stadig flere snurrevadbåter 
monterer Triplex (kraftblokk) 
for sikrere innhaling av nota. 
Alternativet er  ordinær to-
skivet kraftblokk montert på 
bom på hekket  
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Greiing av nota under inntak (må skille vingene og  
grunntelne med tamper fra overtelna)  
 

Stor fangst og mange timers arbeid 



Ubløgget torsk fotografert 5 minutter (venstre) og 24 timer (høyre) etter opptak.  

Bilde 3. Filetene til venstre kommer fra fisk som er bløgget <5 minutter etter opptak 
og utblødd 60 min. i rennende sjøvann. Filetene til høyre kommer fra ubløgget 
råstoff   

15-20% av den norske torskekvoten tas med snurrevad – og andelen 
er økende på bekostning av line og garn. Begrensede fangster med 
snurrevad gir fisk av ypperste kvalitet dersom den blir fortløpende 
bløgget. Utfordringene oppstår når fangstene blir for store!  
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(Kilde: Akse et al 2004) 
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Moderate fangster med snurrevad 
er velegnet til føring og lagring av  
levende fisk. 
 
Fangstbegrensning vil være er en  
av de store utfordringer med hensyn 
til overlevelse og kvalitet. 

Teknologien for skånsom om bord- 
Taking av fisk ble utviklet på tidlig 
2000-tall. Bakre del av sekken er 
utstyrt med et vannfylt lerretsløft.  
    

Når fisken er kommet om bord blir 
Den sortert. Levedyktig fisk lagres 
i lasterommet rommet. Det må være 
nok volum og god oksygentilførsel 
(utskifting av vann).    



SINTEF F&H 2010: Automatisering i snurrevadflåten  
  

Automatisk bløgging om bord vil høyne kvaliteten på hvitfisk fra 
snurrevadflåten og fjerne tunge arbeidsbelastninger for fiskerne. Hensikten 

med prosjektet var å kartlegge teknologiske utfordringer og muligheter i 
snurrevadfisket, og da knyttet til fangstbehandling og HMS.  

 
• For lav kapasitet i bløgge/sløyetrinnet på fartøyene er vanlig. 

Automatiseringsgraden ombord bør derfor økes, både for å forbede 
fangstbehandlingen og av hensyn til fiskernes helse, miljø og sikkerhet. 
Viktigst blir det å utvikle nye automatiserte løsninger for bløgging (inkl. 
mottakstank, bedøving før bløgging og automatisk bløgging) og sortering 
av hvitfisk (anbefaler utvikling av veiesystem om bord for 
snurrevadfanget fisk).  
 
Fangstbegrensning/fangstkontroll ble pekt på som en hovedutfordring 
innen snurrevadfiske under en workshop med næringen i november 2009.   
  

• Ombordtaking av snurrevadfanget fisk bør gjøres mer effektiv og 
skånsom (interessant også å vurdere helt andre løsninger for 
ombordtaking enn de tradisjonelle som benyttes i dag).  
 

• Det er behov for mer optimal nedkjøling og kjølelagring av 
snurrevadfanget fisk. Temperaturen i fisken varierte fra 0,3 til 5,6oC ved 
landing. Kjøling av fangsten med sjøvann ga ikke tilfredsstillende 
temperaturer i fisken.  
 

• Risikofaktorer som har betydning for sikkerheten til fiskerne bør 
reduseres. Hyppigere bruk av riktig verneutstyr anbefales. Hele en av tre 
snurrevadfiskere sier at de sjelden bruker påbudt personlig verneutstyr, 
selv om utstyret er tilgjengelig. Også bedre sklisikring anbefales på 
gangbaner og ståplasser hvor fangstbehandling foregår. 
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I de siste 20 årene er det stadig flere kystfiskefartøy som har lagt om redskapsbruken fra 
garn og line til snurrevad. I dag er det over 300 fartøy som tar hele eller deler av sin kvote 
med snurrevad (Odd Olsen Råfisklaget, 2009, personlig meddelelse).  I kystflåten er det 
bare fartøy som fisker med garn som bringer på land mer fisk enn snurrevadflåten. Og 
stadig foregår det en konvertering fra line og garn til snurrevad. 
  
Samtidig med økt effektivitet, hører en ofte om store snurrevadhal, og om dårlig kvalitet på 
fisk som bringes på land. Dette skyldes ikke de store halene i seg selv, for kvaliteten på 
fisken er helt på topp idet fangsten hales inn mot fartøyside. Det er fra dette stadiet og den 
påfølgende behandling av fangst som medfører en kvalitetsreduksjon. Snurrevadfartøy 
generelt har ikke mottaks- og produksjonskapasitet som står i forhold til den 
fangstkapasiteten som kombinasjon av fartøy og redskap til tider viser. Fangstene sekkes 
ofte direkte om bord, og bløgges eller aller helst direktesløyes med dårlig utblødning som 
resultat. Med mannskap på 6 til 7 personer, vil store fangster ofte ikke være ferdig 
bearbeidet, dvs bløgget og sløyd før etter seks til åtte timer. Dette gir uvilkårlig en redusert 
kvalitet på ilandbrakt fangst. Dette er spesielt iøynefallende i hysefisket. 
  
Under fangst av levende fisk forsøker fartøyene å unngå fangster større en ca ti tonn. Store 
fangster fører til mange sekkinger, med flytting av fisk fram og tilbake i forlengelse og sekk 
flere titals ganger, og rygg- og bukfinner blir oppfliset (Isaksen & Midling 1995). Skinn 
utsettes for slitasje, og hinnen over øyene på fisken mattes ned. Store fangster medfører 
også dårlig kontroll med oppstigingshastigheten til snurrevadposen. Ofte kommer store 
fangster opp fortere enn middels store og små fangster. Dette medfører at en mindre del av 
fisken har klart å kvitte seg med svømmeblæregass fra bukhulen og fangsten består da av 
flere “flytere”, det vil si fisk med gass i bukhulen når den kommer til overflata. Denne 
fisken er svært dårlig egnet til innsetting i merd. 
  
I takt med konvertering av garn- og linefartøy til snurrevad, er det stadig flere mindre fartøy 
som legger om til snurrevad. Dersom signalene fra Fiskeri- og kystdepartementet om et 
friere redskapsvalg følges opp og blir en realitet, er det ikke utenkelig at den mindre flåte 
under f.eks. 15 meter vil få anledning til to-båts snurrevad. Dette vil gi denne flåten det 
nødvendige løft med hensyn til fangsteffektivitet, men samtidig en risiko for enkel tilfeller 
av store hal. På små fartøy vil store hal, og spesielt med “synkesekker” under dårlig vær, 
kunne være en risikofaktor, og fangstmengden bør derfor kunne reguleres.  
 

Seniorforsker Bjørnar Isaksen ved HI, Bergen, har gjennom de siste 20 år ledet 
forskning på snurrevad. HI har flere prosjekter mot bl.a. fangstbegrensning, med  
finansiering fra bl.a. FHF (Fiskeri og havbruksnæringens forskningsfond). 



 

 

 

Appendix A13 
A review on the application and selectivity of square 
mesh netting in trawls and seines 



























 

 

 

Appendix A14 
Foreløbige resultater for snurrevad 























































 

 

 

Appendix A15 
The physical impact of trawl gears 
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•
A Danish Seine is an active fishing gear 
consisting of tw

o long w
arps  

(seine ropes) and a fishing net.  
The w

ings on the net is typically larger than on a bottom
 traw

l net. 
 

•
Fishing Procedure 
•

The boat w
ill set a buoy, lays out the first w

arp, the net and then the second w
arp. 

•
The w

arps are laid out on the seabed to encircle the targeted fish population  
•

The boat w
ill then return to the buoy. 

•
The boat  typically m

oves forw
ard w

ith a speed of upto 2 knots w
hile sim

ultaneously 
beginning to w

inch in the tw
o seine ropes.  

•
The w

ings of the seine w
ill gradually change geom

etry during the fishing process.  
•

An im
portant function of the seine ropes is to herd the fish into the path of the seine 

net betw
een the w

ing tips to ensure they ends up entering the net during the later 
stages of the fishing process 
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Danish Seine Fishing 



Technology for a better society 

Seine Ropes and Fish Herding  
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•
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•
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Developm
ent Strategy of the Project   

•
First building a sim

ple m
odel 

•
Im

prove it bit by bit – an iterative increm
ental developm

ent approach 
•

Sim
ulation M

odel Creation Process 
–

M
odel a setup 

–
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pare the setup to experim
ental data or other sim

ulations 
–

Go back  and im
prove the m

odel 
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Physical M
odelling of Danish Seine Rope Behaviour 

•
The gear geom

etry is determ
ined by the seine ropes 

throughout the process 
•

A physical m
odel is required  to dem

onstrate and 
predict the effects of 

–
Changes to fishing operations – better results w
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–
Changes in gear properties – better results w
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odified gear 

•
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Forces on Danish Seine ropes 
 

•
Seine ropes are slender and flexible structures 
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Thank you for listening 
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•
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both tonnes landed and in value.  Therefore this study focus on cod. 

•
Around 20%

 of the N
orw

egian cod quota is caught using Danish seines.  
•

The target size for cod in the fishery 
       is sizes from

 44 cm
. The codends  

       applied should therefore have low
 

       retention probability for sizes below
 

       44 cm
.  

  The Danish seine fishing process 
Tw

o long seine ropes (w
arps) w

hich are connect to the w
ing tips of the seine is laid out on the 

seabed to encircle the fish population targeted. After the vessel have returned to the buoy 
m

arking w
here the first part of the first seine rope w

as laid out the vessel typically m
oves 

forw
ard w

ith a speed of about 2 knots w
hile sim

ultaneously beginning to w
inch in the tw

o 
seine ropes. An im

portant function of the seine ropes is to herd the fish into the path of the 
seine net betw

een the w
ing tips to ensure they ends up entering the net during the later 

stages of the fishing process. The w
ings of seine w

ill gradually change geom
etry during the 

fishing process.  

3 

Focus on Cod selectivity in Danish Seine codends 
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•
For the N

orw
egian Danish seine fishing north of 64º it is m

andatory to use a square 
m

esh codends in specific areas (m
esh size m

inim
um

 125 m
m

). 
•

 The background for requiring a square m
esh codend for the Danish seine fishing is to 

provide better escapem
ent options along the entire length of the codend com

pared 
to w

hat w
ould be the situation w

ith a diam
ond m

esh codend under longitudinal 
tension.  

•
This is believed to be particular im

portant for the Danish seine fishing w
ith 

escapem
ent options along the entire codend length com

pared to w
ith bottom

 
traw

ling since the fish typically spent far less tim
e in the back part of the codend. 

Contrary to for the bottom
 traw

l fishery it is not m
andatory to use a sorting grid to 

select out the sm
all fish in the N

orw
egian Danish seine fishery for cod and the size 

selection is therefore solely dependent on the size selection in the square m
esh 

codend.   

4 

Codend design 

Square m
esh 

Section m
in. 

125 m
m

 

Diam
ond m

esh 
fish lift section 
m

in. 130 m
m

 

12.5 m
 

Closed until the catch is recovered 
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•
From

 underw
ater recordings it is evident that m

any fish do escape through the fully 
or partly open codend square m

eshes prior to the codend reach the surface.  
          

 •
Recordings also indicate that at least som

e fish seem
 to be able to  

distort at least tensionless m
esh bars during attem

pts to escape. 
•

Clear that m
any m

eshes are only partly open. 

5 

Selectivity at depth 
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•
The w

ay the catch is recovered to the fishing 
vessel in N

orw
egian Danish seine fishing 

differs considerable from
 in the traw

l fishery. 
•

 A com
m

on used m
ethod is called "sacking 

up" and consists of that about 500-1000 kg 
catch at the tim

e is released to the front part 
of the codend w

ith diam
ond m

eshes w
hich is 

lifted on board w
hile the rest of the codend 

rem
ain in surface w

ith slack square m
eshes.  

•
Dependent on the am

ount of catch a fishing 
process can involve several sacking up 
operations  w

hile the rest of the codend 
rem

ain at the surface w
ith the rem

aining fish 
in the catch surrounded by tensionless square 
m

eshes. 
•

The fish lift of diam
ond m

esh netting m
ay also 

contribute to the size selection w
hen the fish 

are released into to this during the catch 
recovery.  
       

 

6 

Sacking up and Codend size selection 
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•
W

e applied the fish m
orphology based sim

ulation m
ethod FISHSELECT to investigate  the 

selective potential of the square m
esh codends including the diam

ond m
esh fish lift. 

•
FISHSELECT is a fram

ew
ork of m

ethods, tools,  
and softw

are developed to determ
ine w

hether 
or not a fish is able to penetrate a certain m

esh  
in an active fishing gear. Through com

puter  
sim

ulation, FISHSELECT (Herrm
ann et al. 2009) enables the estim

ation of the size selectivity 
for a certain species and selection device by com

paring the m
orphological characteristics of 

the form
er and the shape and size of the latter.  

7 

U
sing FISHSELECT m

ethodology and data 

•
For this study w

e used FISHSELECT data 
collected during experim

ental traw
l fishery 

in the Barents Sea and m
orphological 

m
odels based on analysis of these data. 

These data and m
odels are described in 

Sistiaga et al. 2011. 
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Due to the observations  that the fish w
ill experience codend m

eshes w
ith different 

shape and tension states during the Danish Seine fishing process w
e consider for the 

sim
ulation different scenario's regarding the distortability of m

esh shapes w
hen cod 

attem
pt to escape through:  

  

8 

Different m
esh states considered in sim

ulations 

I.
Soft/slack m

esh m
odel 

The fish can fully distort the m
esh  shape to take shape after the 

fish cross section 
II.

Sem
i soft square m

esh m
odel  

For partly open square m
eshes the fish can distort the 

tensionless m
esh bars outw

ards 
(m

odel also applied in Krag et al. (2011) for study of selectivity of haddock in traw
l 

square m
esh codends) 

   III.
Stiff m

esh m
odel 

The fish cannot distort the m
esh shape at all neither bars w

ith 
tension or w

ithout tension in 
 

Fish 
Cross 
section 
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Prediction of Selective potential for the current codend design 

L05 

L95 

Target size lim
it at 44 cm

 

•
Soft/slack m

esh selectivity if occurring could potentially m
ean release of cod far above the target lim

it. 
•

Sem
i soft m

esh selectivity can if optim
al open result in release of cod w

ell above m
inim

um
 target size. 

But it need to be at least 70%
 open to avoid retaining som

e undersized cod. 
•

  If the cod are not able distort even tensionless m
esh bars (stiff m

esh) then it is necessary that the 
square m

eshes are fully open to avoid risking catching undersized cod. 
•

The selective potential in the bigger m
esh size fish lift can if slack/soft or w

ell open result in potential 
after selection. 

44 
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•
Paired gear data from

 Isaksen and Larsen 
(1988) 

•
Square 120 m

m
 

•
Thin and flexible tw

ine construction (thinner 
and m

ore flexible than applied today)  
•

Fish lift diam
ond 110 m

m
 

•
Trouser gear data (control 60 m

m
 m

esh size) 
•

Few
 hauls conducted. 

•
 Re-analysed to obtain  

confidence lim
its: 

10 

Experim
ental results from

 historical codend 

0

0.25

0.5

0.75 1

25
35

45
55

65
75

Probabilty 

Length (cm
)

Paired curve

0

0.25

0.5

0.75 1

25
35

45
55

65
75

Retention probabilty 

Length (cm
)

Selectivity curve

L50 
57.33 (54.52 - 85.65) 

SR
 

6.61 (5.37 - 32.43) 
1/δ 

0.0231 (0.0193 – 100) 
SP 

0.500 (0.4044 - 0.8603) 
P-V

alue 
0.5889 

D
eviance 

3.73 
D

O
F 
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L05 
43.48 (39.44 - 53.66) 

L10 
47.65 (44.14 - 59.44) 

L15 
50.09 (46.88 - 63.69) 

L20 
51.82 (48.69 - 66.80) 

L25 
53.16 (50.09 - 70.31) 

L30 
54.26 (51.30 - 73.61) 

L35 
55.18 (52.34 - 76.61) 

L40 
55.99 (53.18 - 79.57) 

L45 
56.70 (53.85 - 82.57) 

L55 
57.90 (55.08 - 88.87) 

L60 
58.43 (55.61 - 92.29) 

L65 
58.91 (56.11 - 96.15) 

L70 
59.35 (56.58 - 100.56) 

L75 
59.77 (57.10 - 105.58) 

L80 
60.16 (57.49 - 110.38) 

L85 
60.52 (57.83 - 116.91) 

L90 
60.87 (58.36 - 123.78) 

L95 
61.21 (58.71 - 137.68) 
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𝑓𝑓 (𝑤𝑤1 , …,𝑤𝑤𝑛𝑛 )=
� ∑

(𝐿𝐿𝑖𝑖 −𝐿𝐿𝐿𝐿 (𝑤𝑤1 ,…,𝑤𝑤𝑛𝑛 )𝑖𝑖 ) 2
𝑖𝑖

 , 
 

 
 

𝑖𝑖∈ {5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95 } 

•
Can w

e understand the historical data based on the different m
esh states m

odels and 
thereby learn som

ething about size selection of cod in Danish seine codends based on 
square m

esh selection?  
•

W
e investigated different scenario's regarding the fish ability to distort the m

eshes: 
not (stiff), partly (sem

i soft), fully (soft) or com
binations of these.  

•
In particular w

e investigated if the com
bination of m

eshes w
ith different openness 

(%
) and different distortion m

odes w
ould have the potential to replicate the 

experim
entally observed selectivity curve. For doing this w

e used the technique 
described in Herrm

ann et al. (2013) : 

11 

Replicating the historical data by FISHSELECT sim
ulation 

Experim
ental result Sim

ulation result 

Contribution factor 
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Ability to replicate experim
ental results for different m

esh states scenario's 

0 10 20 30 40 50 60 70

Contribution (%) 

Sem
i soft: open 100%

 to 40%
 

100%
 

50%
 

soft 

•
O

nly a com
bination of sem

i soft and soft/ 
slack m

eshes w
ith a considerable contribution 

(>60%
) can explain the historical data!  

experim
ental 

sim
ulation 
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•
Soft/slack m

esh escapem
ent seem

 to play a big role for the selection process in the 
historical gear – could speculate w

hen during the fishing process this m
ay occur and 

w
hat w

ould be the survival rate of those fish. 
•

The current applied codends are m
ade of stiffer and thicker tw

ine and it can therefore 
be questioned if soft/slack m

esh escapem
ent w

ill play any significant role for the 
designs applied today. 

•
W

ould be beneficial w
ith experim

ental results for designs m
ade of currently applied 

codend m
aterials since this w

ould enable predictions for this type of contructions. 
•

How
ever if cod can as indicated from

 underw
ater recordings distort tensionless partly 

open square m
eshes (sem

i soft escapem
ent) then the current applied design support 

release of all cod below
 the target sizes ( 44 cm

) if the codend m
eshes are at least 70 

%
 open. 

•
If the cod cannot distort the m

eshes at all (stiff m
esh) then the codend m

eshes needs 
to be fully open to release all undersized cod through the square m

eshes of the 
current design. 

•
Bigger m

esh size in the fish lift than for the square m
eshes m

ay potentially  lead to 
late escapem

ent of som
e cod if these m

eshes are slack or w
ell open. 

 

13 

Conclusion/Discussion 
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THAN
KS! 
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