

F26123- Restricted

Report

Danish Seine: Computer based Development and Operation

Reporting on the expert workshop activities March 2013 – May 2014

Author Bent Herrmann

SINTEF Fisheries and Aquaculture SINTEF Fisheries and Aquaculture 2014-05-20

SINTEF Fiskeri og havbruk AS SINTEF Fisheries and Aquaculture P.b. 4762 Sluppen NO-7465 Trondheim NORWAY

Telephone:+47 40005350 Telefax:+47 fish@sIntef.no www.sIntef.no/fisk Enterprise_/VAT No: NO 980 478 270 MVA

KEYWORDS: Danish Seine Simulation Gear behaviour Selectivity Expert workshop

Report

Danish Seine: Computer based Development and Operation

Reporting on the expert workshop activities March 2013 - May 2014

VERSION 1.0 date 2014-05-20

AUTHOR Bent Herrmann

> CLIENT(S) RCN / FHF

CLIENT'S REF. 225193 / 900861

PROJECT NO. 225193 (MAROFF-2) / 900861 (FHF) / 6020699 (SFH) NUMBER OF PAGES/APPENDICES: 8 + Appendices

ABSTRACT

The purpose of the project "Danish Seine: Computer based Development and Operation" (MAROFF-2 project no. 225193 / FHF 900861), funded by Research Council of Norway (RCN) and Norwegian Seafood Research Fund (FHF), is to develop software tools to investigate Danish Seine fishing. These tools cover both the physical behaviour of the Danish Seine gear during the fishing process and the selectivity inside the Seine net. International knowledge is transferred to the project through an expert group established in connection with the project to assist development of models and software tools in the project. This report summarizes the expert group activities carried out inside the project in the period March 2013 to May 2014.

CLASSIFICATION

Restricted

PREPARED BY Bent Herrmann

CHECKED BY Nina Madsen

APPROVED BY Vegar Johansen

REPORT NO. ISBN F26123 ISBN

SIGNATURI

SIGNATURE

SIGNATURE

eLASSIFICATION THIS PAGE Restricted

1 of 8

Document history

VERSIONDATEVERSION DESCRIPTIONVersion No. 12014-05-20

SINTEF

Table of contents

1	Introduction4				
2	Description of the expert group				
3	Description of the projects development team				
4	Transfer of knowledge from Dr. Priour prior to the expert workshop				
5	Transfer of knowledge from Dr. O'Neill prior to the expert workshop				
6	Transfer of knowledge from Dr. Stepputtis prior to the expert workshop				
7	Desc	ription of activities during the expert workshop	.6		
	7.1	Meeting with Dr. Report Vincent	6		
			. 0		
	7.2	Meeting with Dr. Antonello Sala	6		
	7.2 7.3	Meeting with Dr. Antonello Sala Meeting with Dr. Priour	. 6 6		
	7.2 7.3 7.4	Meeting with Dr. Antonello Sala Meeting with Dr. Priour Group Meeting	. 6 . 6 . 7		

APPENDICES

- A1: Finite element method for netting
- A2: Danish Seine National project ENERSENNE
- A3: Danish Seine National project ENERSENNE Introduction
- A4: Danish Seine National project ENERSENNE Test at sea
- A5: Netting modeling by Triangular elements
- A6: Drag of cables on the sea bottom
- A7: A finite element method for netting: application to Fish cages and fishing gears
- A8: Scottish seine net selectivity and catch comparison data
- A9: A comparative analysis of legislated and modified Baltic Sea trawl codends for simultaneously improving the size selection of cod (Gadus morhua) and plaice (Pleuronectes platessa)
- A10: Warum funktioniert das Bacoma?
- A11: German pictures for roundfish escapement through square meshes of codends
- A12: FISKE MED SNURREVAD
- A13: A review on the application and selectivity of square mesh netting in trawls and seines
- A14: Foreløbige resultater for snurrevad
- A15: The physical impact of trawl gears
- A16: Simulating the Physical Behaviour of Seine Ropes for Evaluating Fish Herding Properties of Danish Seines
- A17: Understanding and predicting size selection of cod (Gadus morhua) in square-mesh codends for Danish
 - Seining: a simulation-based approach

1 Introduction

The purpose of the project "Danish Seine: Computer based Development and Operation" (MAROFF-2 project no. 225193 / FHF project no. 900861), funded by Research Council of Norway (RCN) and Norwegian Seafood Research Fund (FHF), is to develop software tools to investigate Danish Seine fishing. These tools cover both the physical behaviour of the Danish Seine gear during the fishing process and the selectivity inside the Seine net. The project is led by Sintef Fisheries and Aquaculture (SFH), and is carried out in collaboration with the Norwegian College of Fishery Science at the University in Tromsø (UiT). To provide expert knowledge about physical modelling of fishing gear behaviour, simulation of selectivity, Danish Seine fishing and Seining selectivity to the development team in the project an expert group has been created. Three international specialists, covering different scientific disciplines and fields of experience of importance for the development team participate in the expert group. Transfer of knowledge from these international experts to the members of the development team in the project has during the period March 2013 to May 2014 been provided through: i) Skype and telephone meetings between one expert and one member of the development team; ii) mail correspondence; iii) a workshop between all the members of the development team and the experts (May 2014).

The purpose of this report is to document which knowledge have been transferred from the experts to the project and to outline how it has been achieved. The main parts of the report are therefore in a comprehensive appendix indexed A1 to A17 which contain the information transferred in the form of data, documents, presentations, and presentations discussed. The report then outlines how the transfer of knowledge has been obtained while referring to the appendices.

2 Description of the expert group

Three experts from internal research institutes participate in the expert group. The role of these experts is to transfer knowledge to the project which will ensure that the development inside the project is based on knowledge which is at the international forefront.

IFREMER in France participates with Dr. Daniel Priour. He is regarded an international expert in modelling of netting behaviour in towed fishing gears and has recently initiated national research in France regarding simulation of Danish Seine behaviour.

Fisheries Research Service at the Marine Laboratory, Aberdeen, Scotland (FRS) participates through Dr. Barry O' Neill. He has expertise in hydrodynamics, modelling of netting behaviour in towed fishing gears, physical modelling of the seabed impact by active fishing gears, size selectivity, fish behaviour and simulation of fishing gear selectivity. Further, Dr. O' Neill has experiences and access to experimental data regarding size selectivity in Seine fishing.

The Johann Heinrich von Thünen Institute (TI) is represented by Dr. Daniel Stepputtis. He has his main expertise in conducting full scale sea trials measuring various biological parameters, gear behaviour during fishing and is in charge of a team conducting selectivity experiments.

Experimental data and underwater observations from Dr. Stepputtis' team are used in the development and verification processes for the simulation models in the project. Specifically, test of some aspects of the codend size selectivity simulation model is possible through this collaboration.

3 Description of the projects development team

To implement the simulations tools being developed in the project a software development team with three members from SFH has been setup. They are the one who has the task of implementing the different models into the computer code which form the software tools being developed in the project. The main flow of

information from the group of experts is therefore to be directed towards this development team. The software development team consists of:

- Dr. Bent Herrmann who is responsible for development of the seine selectivity models in the project. He further acts as project manager for the project.
- Dr. Karl Gunnar Aarsæther who works on the physical modelling of gear behaviour with main focus on implementing the core model.
- Dr. Nina A.H. Madsen who works on the physical modelling of gear behaviour with main focus on the user interface implementation.

Besides these three members specific parts of the models will be implemented by other SFH-staff with special and specific know how.

To support the software development team with basic knowledge about Norwegian fishery and in particular Danish seine fishing MSc. Roger B. Larsen from UiT is part of the project team. Further are these activities supplemented by Dr. Manu Sistiaga and Dr. Eduardo Grimaldo, both from SFH.

4 Transfer of knowledge from Dr. Priour prior to the expert workshop

During several telephone meetings and Skype meetings in the period March 2013 to April 2014 between Dr. Herrmann and Dr. Priour have various technical subjects been discussed regarding the application of finite elements methods to simulate the physical behaviour of active fishing gears like trawls and seines. Key subjects covered in these discussions have included:

- Use of 2D triangular elements to model the physical behaviour of diamond mesh, square mesh and hexagonal mesh netting.
- Application of different drag models with specific focus on problems with realistic modelling when small angles of attack occur between netting and the current.
- Application of the Newton-Raphson method versus the Newmark's method in the estimation algorithm.
- Application of different types of convergence criteria's to stop the estimation algorithm.
- Models for the interaction between fishing gear and seabed.
- Temporary use of additional model stiffness by adding a virtual contribution to the diagonal in the stiffness matrix for the model to mitigate matrix singularity problems during estimations.
- Use of stepwise model refinement in estimation as method to reduce overall model estimation time.
- Strategies for acquisition of experimental data to validate the physical behaviour of different parts of the Danish Seine fishing gear.

Many of the different subjects addressed in these discussions with Priour are covered by the descriptions in [A7].

5 Transfer of knowledge from Dr. O'Neill prior to the expert workshop

Telephone and Skype meetings between Dr. O'Neill and Dr. Herrmann have been conducted in the period March 2013 and April 2014. Key subjects discussed have covered:

- Methods for comparing codend size selectivity in Danish/ Scottish Seines and demersal trawls.
- Simulation of codend selectivity
- Modelling of fish herding in active fishing gears like Danish seines and demersal trawls.

Some information is described in [A8]

6 Transfer of knowledge from Dr. Stepputtis prior to the expert workshop

Dr. Herrmann have in the initial part of the project (March 2013 – February 2014) had telephone meetings with Dr. Stepputtis aiming at identifying German collected experimental codend selectivity data which might have relevance for the current project. This was concentrated around codends made of square mesh netting and codends where the selectivity mainly would be attributable to the use of square mesh panels. The species in focus was cod. Some information is documented in [A9].

The discussions with Dr. Stepputtis also aimed at identifying underwater recordings which could learn the project something about fish escape behaviour in relation to square mesh panels and codends. [A11] show a few examples of screen dumps.

Another subject discussed was experimental method and data to assess fish herding efficiency of cables /warps when dragged over the seabed during fishing with active gears like trawls and Danish seines. A German experimental dataset will be applied as a basis to model flatfish herding efficiency.

7 Description of activities during the expert workshop

It was found to be practical to coordinate the expert workshop in the project with the venue of the ICES working group for Fisheries Technology and Fish Behaviour (ICES WGFTFB) 2014 annual meeting because: i) the project had to report to ICES WGFTFB as part of the scientific dissemination activities in the project; ii) it would provide the platform to exchange the ideas with national and international scientists not being part of the expert group; iii) it would be easier to coordinate the participation of the expert group members; iv) further it would provide the chance to introduce some of the younger members of the development team to the international scientific environment on Fishing gear technology around the ICES WGFTFB. The expert workshop was therefore conducted in the period May $4^{th} - 9^{th}$, 2014 in parallel with ICES WGFTFB in New Bedford, MA, US. The workshop activities are described in the subsequent subsections.

7.1 Meeting with Dr. Benoit Vincent

May 6th did Dr. Madsen, Dr. Aarsæther and Dr. Herrmann meet with Dr. Vincent from France to discuss simulations modelling of the physical behaviour of Danish seines. Dr. Vincent is the developer of the internationally recognized commercial software *Dynamit* (http://wwz.ifremer.fr/dynamit) which simulates the physical behaviour of trawls. Parts of the discussion with Dr. Vincent was rather technical with one of the subjects being the use of different convergence criteria's in the simulation of dynamic fishing gear behaviour. Furthermore Dr. Vincent informed that he is going to build a simulation model for the physical behaviour of Danish seines. In this context it was agreed to share ideas and information. Dr. Vincent also informed that some of his colleagues are going to work with size selectivity in Danish Seine netting. That work was going to be coordinated by MSc Pascal Laurent who will be contacted to investigate potential collaborations with regarding the size selectivity part of the project.

7.2 Meeting with Dr. Antonello Sala

May 8th did Bent Herrmann meet with Dr. Sala from CNR in Italy to discuss the project. The background for the meeting was that Dr. Sala expressed interest in the project and potentially would consider national research activities on the Danish seine fishing method. In this context he was interested in a future collaboration. It was agreed to further investigate the possibilities for a future collaboration.

7.3 Meeting with Dr. Priour

On the May 8th a two and a half hour Skype meeting was held with Dr. Priour with participation of Dr. Madsen, Dr. Aarsæther and Dr. Herrmann from the project group. This had to be conducted as a Skype meeting since Dr. Priour few weeks before the planned workshop activities was prevented to travel to the workshop. The purpose of the meeting was mainly to let Dr. Priour give lectures in his long standing experience in modelling of physical behaviour of active fishing gears including Danish Seines. It was also a

PROJECT NO.	REPORT NO.	VERSION	6 of 8
MAROFF-2) / 900861 (FHF) / 6020699	F26123	1.0	0010
(

main objective of this meeting to introduce the younger members of the development team in the project to Dr. Priour with the purpose to enable direct collaboration in the later stages of the project.

One of the key subjects in the lectures by Priour was the application of the finite element method to model the physical behaviour of active fishing gears. Dr. Priour is considered an internationally leading scientist. Dr. Priour has developed an estimation tool FEMNET which can predict the physical behaviour of active fishing gears like trawls and Danish seines. Priour introduced the basic ideas of the finite element method and showed a few very simple examples [A1] on how to estimate the equilibrium state for simple systems model by the finite element method and by applying the Newton Raphson method. He continued by explaining how triangular elements can be applied to model netting when this is considered as a 3D surface. He showed how to derive the stiffness matrix for the triangular element [A1] and [A5]. Priour explained how he mitigates singularity or near-singularity in the stiffness matrix by use of temporal added stiffness to the diagonal elements in the matrix.

Dr. Priour explained about the national French project he is heading regarding Danish seine fishing [A3]. He did explain how he had adopted his FEMNET estimation tool to simulate the Danish seine fishing process and showed an example of the estimated physical behaviour [A2]. It was clear from this part of the lecture that the knowledge of Dr. Priour can be very valuable to this project.

Further Dr. Priour did lecture on the very recent sea trials which were carried out April 2014 in the French project. The purpose of those sea trials was to provide experimental data on the physical behaviour of the Danish seine gear during fishing operations which could be applied to validate/adjust the simulation model [A4]. Besides given a lecture on the data collected Dr. Priour also provided an access to the French data which will enable a potential the use of these data in the model validation work to be carried out in the current project both on qualitative and quantitative level.

7.4 Group Meeting

A four hour workshop meeting did take place May 7th, 2014 in New Bedford. This meeting had participation by: Dr. O'Neill, Dr. Stepputtis, Dr. Grimaldo, MSc. Larsen, Dr. Aarsæther, Dr. Madsen and Dr. Herrmann.

Dr. O'Neill presented Scottish codends selectivity data where results from Seining were compared to from demersal trawling [A8]. The Scottish-based results, for mainly haddock, did not show significant difference from those obtained from trawling. Confidence limits where however wide for the seining results and the validity of the model with the trawls results were based on can be questioned. Potential availability of older Scottish seining codend selectivity was also discussed and it was agreed to investigate this further to see if other data which could be of value for the project should exist.

Dr. Stepputtis presented codend selectivity data collected for cod during German sea trials with trawls [A9]. These codend selectivity data involved different codends which has a square mesh panel integrated and a full square mesh codend (120 mm). Even through this data was from bottom trawling and not seining, they were considered to be relevant for the project to learn something about square mesh selectivity of cod. The results demonstrated significant difference in size selectivity of cod between when the codend only partly is built of square meshes compared to when it is fully built of square meshes. In the discussion it came up how this demonstrate the relevance of the specific square mesh codend designs applied in some of the Norwegian Danish seine fishing. The results have relevance for the codend size selection simulator of the project. Further Dr. Stepputtis gave a presentation on a study on factors which affects the codend square mesh release efficiency in codends [A10]. In addition Dr. Stepputtis showed several video clips demonstrating the behaviour of cod and other roundfish species when inside a fishing gear and in particular the behaviour in vicinity of codend square meshes. A few still pictures are shown in [A11].

MSc. Larsen was showing video clips demonstrating the different operational steps in Norwegian Danish seine fishing. The material and the discussion on it provided information with was relevant to consider when designing the user-interface for the simulation tool regarding which facilities there needed to be available. Further MSc. Larsen did make a presentation covering different technical aspects on how Danish Seine fishing is carried out in Norwegian fishery [A12]. The information presented and discussed are relevant for the design options in the tools being developed and for the selection of case designs during the development stages of the project.

Some historical Danish seine selectivity work which MSc. Larsen has been involved in was presented and discussed in the meeting. This information is of key importance for the development of the selectivity simulator in the project. Some of the results of the work MSc. Larsen has been involved in are described in [A13] and [A14].

Dr. Grimaldo presented several very recent underwater video clips from Norwegian Danish Seine fishing. These video clips provide valuable information about when during the Danish seine fishing process cod and haddock escape from the seine. Further these underwater recordings seem to be able to provide detailed information for the selectivity simulator regarding which of the different mesh distortions model that should be considered. These different models are outlined and applied in [A17]. It was discussed how this could be achieved and what additional information that would be relevant to collect for the benefit of this project.

Based on Dr. O'Neill expertise regarding modelling of interaction between fishing gear elements and the seabed there was a discussion on how best to model the interaction between seine ropes and the seabed in the simulation tools. An important part would here be to obtain realistic values for the model parameters. It was discussed whether parts of the work Dr. O'Neill presented in the WGFTFB-meeting could provide some information [A15].

7.5 Activities within the WGFTFB meeting

Inside the WGFTFB meeting did Dr. Madsen give a presentation about the project with a focus on the physical behaviour of the seine ropes [A16]. One purpose of this presentation was to provide a broader international collaboration around the current project and feed-back from a large group of scientists. The presentation did lead to some discussion about the differences and similarities between the different variants seining fishing including what could be defined as Danish seining and Scottish seining.

Also inside the WGFTFB meeting did Dr. Herrmann give a presentation with the title Understanding and predicting size selection of cod (Gadus morhua) in square-mesh codends for Danish Seining: a simulationbased approach. The purpose was here to get some response on the work being conducted in the project regarding simulation of size selectivity [A17]. Member, MSc. Thomas Moth Poulsen (FAO), of WGFTFB responded by stating that some experimental data might be available which could potentially be of interest for the project. This will be investigated further. Further did Dr. Michael Breen from IMR Norway express interest in potentially applying the model in the work of another ICES working group.

Technology for a better society www.sintef.no

Finite Element Method for netting

Fish cages and fishing gears Finite element for netting Newton Raphson method Finite element method

Finite Element Method for netting

Daniel.Priour@ifremer.fr

IFREMER

November 4, 2010

Daniel.Priour@ifremer.fr

Finite Element Method for netting

μį յիլի

Finite element for netting

Fish cages Fishing gears

Finite element for netting Finite element method Newton Raphson method Fish cages and fishing gears A simple example Structure with several DOF Spring with 2DOF Spring with 1DOF Fishing gears Fish cages Drag on twines Equations I riangular element Tension in twines Newmark an alternative to Newton Raphson method Twines flexion

<u>d</u>iji

Finite element for netting

Fish cages Fishing gears

Fish cages

- Salmon in Norway (1Mtons/y)
- Sea-bass in Greece
- Tuna in Japan (Ktons/y)

μļ

μh

Finite element for netting

Fish cages Fishing gears

Fish cages

- What are the tension in cables?
- What is the volume inside the cage?

μļ

μh

Finite element for netting

Fish cages Fishing gears

Fishing gears

- Bottom trawl common in Europe
- Purse seine
- Dredge
- Fish trap

μį

յիլի

Daniel.Priour@ifremer.fr

Finite element for netting

Fish cages Fishing gears

Fishing gears

- What is the drag of the trawl? And the fuel consumption? (^{1/}/_{Kg})
 What are the mesh
- opening in the cod-end? And the fish escapment?

Finite Element Method for netting

Fish cages and fishing gears Newton Raphson method Finite element method Finite element for netting

Spring with IDOF Spring with 2DOF Structure with several DOF Newmark an alternative to Newton Raphson method

Newton Raphson method: Spring with 1DOF

Question: What is its length?

- $F(x) = Ax \frac{x-l_0}{l_0} Mg$
- Stiffness not constant
- What is the length (x) at equilibrium?
- Equilibrium: F(x) = 0

<u>d</u>iji

Fish cages and fishing gears Finite element for netting Newton Raphson method Finite element method

Spring with 2DOF Spring with 1DOF

Spring with 1DOF

Arbitrary length x = x₀

•
$$F(x) = Ax \frac{x-l_0}{l_0} - Mg$$

•
$$F'(x) = \frac{A}{l_0}(2x - l_0)$$

Newton Raphson leads to:

$$\bullet x_{k+1} = x_k + \frac{F(x_k)}{-F'(x_k)}$$

•
$$x_0 - > F(x_0) - > F'(x_0) - > x_1$$

• $F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h - F(x)}$

•
$$F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$$

Finite Element Method for netting

▲ □ ▼ ▲ 堲 ▼ ▲ 前 իլի μh

Daniel.Priour@ifremer.fr

Spring with 1DOF

- Convergence is pretty quick
- But sometimes F'(x) = 0
- $x_{k+1} = x_k + \frac{F(x_k)}{-F'(x_k)}$
- Additional stiffness

Spring with 1DOF

Fish cages and fishing gears

Finite element for netting Newton Raphson method

Finite element method

Fish cages and fishing gears Newton Raphson method Finite element method Finite element for netting

Spring with 1DOF Spring with 2DOF Structure with several DOF Newmark an alternative to Newton Raphson method

Spring with 2DOF

Daniel.Priour@ifremer.fr

Finite Element Method for netting

Fish cages and fishing gears Newton Raphson method Finite element method Finite element for netting

Spring with 1DOF Spring with 2DOF Structure with several DOF Newmark an alternative to Newton Raphson method

Spring with 2DOF

$$\mathbf{X}_{k} = \begin{cases} x_{k} \\ y_{k} \end{cases}$$
$$\mathbf{F}(\mathbf{X}_{k}) = \begin{cases} F_{X}(\mathbf{X}_{k}) \\ F_{Y}(\mathbf{X}_{k}) \end{cases}$$
$$F'(\mathbf{X}_{k}) = \frac{A}{b_{k}k} \begin{cases} l_{k}^{2} - l_{0}l_{k} + y_{k}^{2} \\ l_{k}^{2} - l_{0}l_{k} + y_{k}^{2} \end{cases}$$
$$K_{k+1} = \mathbf{X}_{k} + \frac{F(\mathbf{X}_{k})}{-F'(\mathbf{X}_{k})} \end{cases}$$

$$\begin{aligned} x_k y_k \\ l_k^2 - l_0 l_k + y_k^2 \end{aligned}$$

Finite Element Method for netting

Residue of force norme

Spring with 2DOF

Spring with 1DOF Spring with 2DOF

Fish cages and fishing gears Finite element for netting Newton Raphson method Finite element method

▲ □ ▼ ▲ 堲 ▼ ▲ 前 <u>d</u>iji

Daniel.Priour@ifremer.fr

 $\mathbf{X}_{k+1} = \mathbf{X}_k + rac{\mathbf{F}(\mathbf{X}_k)}{-F'(\mathbf{X}_k)}$

Newmark an alternative to Newton Raphson method Structure with several DOF Spring with 1DOF Spring with 2DOF

Fish cages and fishing gears

Finite element for netting Newton Raphson method

Finite element method

Structure with several DOF

The additional stiffness K is tuned $-F'(\mathbf{X}_k) =$ $-\frac{dF_1}{dx_1} + K$ $\frac{dF_2}{dx_1}$ $-\frac{dF_2}{dx_2}+K$ $-\frac{dF_n}{dx_2}$ $-\frac{dF_1}{dx_2}$ $\cdot + \kappa$ $-\frac{dF_n}{dx_n}+K$ $-\frac{dF_1}{dX_n}$ Structure with several DOF: Risk of singularity

Fish cages and fishing gears

Newton Raphson method

Finite element method

Structure with several DOF Spring with 1DOF Spring with 2DOF

Finite element for netting

- $x_{k+1} = x_k + v_k \Delta t + \gamma_k \frac{\Delta t^2}{2}$
- $M\gamma = F(x)$

 $F(x) = Ax \frac{x - l_0}{l_0} - Mg$

Spring with 1DOF: Newmark vs Newton

Fish cages and fishing gears

Finite element for netting Newton Raphson method

Newmark an alternative to Newton Raphson method

Structure with several DOF Spring with 1DOF Spring with 2DOF

Finite element method

- Δt is choosen
- $\mathbf{v}_{k+1} = \mathbf{v}_k + \gamma_k \Delta t$

Daniel.Priour@ifremer.fr

Fish cages and fishing gears Newton Raphson method Finite element method Finite element for netting

A simple example

Circle perimeter

- The perimeter is $2\pi R$
- The perimeter approximated by n times cord length
- Cord length $2Rsin(\frac{\alpha}{2})$
- or $2Rtan(\frac{\alpha}{2})$ (outside)

μh

Circle perimeter

Finite Element basic idea:

- Divided in finite elements
- Approximation by element
- Rebuilding all the elements

A simple example

Fish cages and fishing gears

Finite element for netting Newton Raphson method

Finite element method

Fish cages and fishing gears Newton Raphson method Finite element method Finite element for netting

Triangular element Equations Tension in twines Drag on twines Twines flexion Catch pressure

Finite element for netting: How?

Netting behaviour:

- Surface
- Elastic

Model test in flume tank

Daniel.Priour@ifremer.fr

Finite Element Method for netting

Fish cages and fishing gears Newton Raphson method Finite element method Finite element for netting

Triangular element Equations Tension in twines Drag on twines Twines flexion Catch pressure

Finite element for netting: Triangle

Triangular element for netting:

- twines parallel
- linear elasticity

Triangular elements model all the netting

μį

- 2 equations, 2 unknowns (\mathbf{U}, \mathbf{V}) Nodes are fixed to the netting $\mathbf{13} = (\mathcal{U}_3 - \mathcal{U}_1)\mathbf{U} + (\mathcal{V}_3 - \mathcal{V}_1)\mathbf{V}$ $12 = (U_2 - U_1)\mathbf{U} + (V_2 - V_1)\mathbf{V}$ combinaison of mesh sides U, VCartesian coordinates: $x_1...z_3$ Triangle side 12 is linear Twine coordinates: $U_1...V_3$

Finite element for netting: calculation of mesh sides $({\sf U},{\sf V})$

Fish cages and fishing gears

Equations

Finite element for netting Newton Raphson method

Catch pressure

Twines flexion

Finite element method

իլի μh

and $d = (U_2 - U_1)(V_1 - V_3) - (U_3 - U_1)(V_1 - V_2)$

Sides vectors:

Fish cages and fishing gears

Equations

Finite element for netting Newton Raphson method

Catch pressure

Twines flexion

Finite element method

Finite element for netting: calculation of mesh sides $({\sf U},{\sf V})$

Finite Element Method for netting

Nb of knots = d/4

Nb of mesh sides V = d/2

Nb of mesh sides $\mathbf{U} = d/2$

meaning of d:

Nb of meshes = d/4

Finite element for netting: number of mesh sides $({f U},{f V})$

Fish cages and fishing gears

Equations

Finite element for netting Newton Raphson method

Catch pressure

Twines flexion

Finite element method

 $d = (U_2 - U_1)(V_1 - V_3) - (U_3 - U_3) -$

Daniel.Priour@ifremer.fr

Fish cages and fishing gears Finite element for netting Newton Raphson method Finite element method

Catch pressure Twines flexion Tension in twines

Finite element for netting: tension in mesh sides (T_u, T_v)

Twines are elastic:

- A_u , A_v : section of the twines (m^2) , *E*: Young's modulus of the material (N/m^2) ,
- I_o: un-stretched length of mesh sides (m).

Daniel.Priour@ifremer.fr Finite Element Method for netting

▲□▼ ▲理▼ ▲ 町 μh

Finite Element Method for netting

<u>d</u>iji

$$\frac{\partial F_{SL}}{\partial x^1} = \frac{\mathcal{E}h_u(V_3 - V_2)}{2} \left[\frac{\partial U_x}{\partial x^1} \left(\frac{1}{n_0} - \frac{1}{|\mathbf{U}|} \right) + \frac{\partial |\mathbf{U}|}{\partial x^1} \frac{U_x}{|\mathbf{U}|^2} \right] + \frac{\mathcal{E}h_v(U_2 - U_2)}{2} \left[\frac{\partial V_x}{\partial x^1} \left(\frac{1}{n_0} - \frac{1}{|\mathbf{V}|} \right) + \frac{\partial |\mathbf{V}|}{\partial x^1} \frac{V_y}{|\mathbf{V}|^2} \right]$$

Finite element for netting: Principle of virtual work Catch pressure

Fish cages and fishing gears

Finite element for netting Newton Raphson method Finite element method

Twines flexion Tension in twines

Fish cages and fishing gears Newton Raphson method Finite element method **Finite element for netting**

Triangular element Equations Tension in twines **Drag on twines** Twines flexion Catch pressure

Drag (**F**, **T**) per triangular element

Amplitude of drag on **U** twine: $|\mathbf{F}| = \frac{1}{2}\rho C_d D |\mathbf{U}| (|\mathbf{v}|sin\theta)^2$ $|\mathbf{T}| = f \frac{1}{2}\rho C_d D |\mathbf{U}| (|\mathbf{v}|cos\theta)^2$

 $\mathsf{D1} = \frac{1}{3} \frac{d}{2} (\mathsf{F} + \mathsf{T})$ Force on vertex 1 due to drag on **U** twine:

Angle between **v** and **U** twine: $cos\theta = \frac{\mathbf{v}.\mathbf{U}}{|\mathbf{v}||\mathbf{U}|}$

Fish cages and fishing gears Newton Raphson method Finite element method **Finite element for netting**

Triangular element Equations Tension in twines Drag on twines **Twines flexion** Catch pressure

Twines flexion per triangular element

Angle between twines **U** and **V**: $\alpha = \frac{1}{2} acos(\frac{\mathbf{UV}}{|\mathbf{U}||\mathbf{V}|})$

 $C_{\rm u} = -C_{\rm v} = H(\alpha - \alpha_0)$

Couple on knot due to flexion of **U** twine:

 α_0 angle between unstressed twines

▲□▼ ▲理▼ ▲ 町

<u>d</u>iji

Fish cages and fishing gears Finite element for netting Newton Raphson method Finite element method

Catch pressure Twines flexion lension in twines

Twines flexion per triangular element

Virtual works:

$$W_e = Fx_1\partial x_1$$

 $W_i = \frac{d}{2}(C_u\partial\alpha - C_v\partial\alpha)$

 $F_{X_1} = C_u d \frac{\partial \alpha}{\partial x_1}$ Forces on vertex 1 along X axis:

 $F_{x_1} = H(\alpha - \alpha_0) d \frac{\partial \alpha}{\partial x_1}$

Derivative of
$$\alpha$$
:

$$\frac{\partial \alpha}{\partial x_1} = \frac{V_x V_1 - U_x U_1 - \frac{U_x (\mathbf{u} \cdot \mathbf{v}) V_1}{|\mathbf{u}|^2} - \frac{V_x (\mathbf{u} \cdot \mathbf{v}) U_1}{|\mathbf{v}|^2}}{2dsin\alpha |\mathbf{U}||\mathbf{v}|}$$

 $\alpha = \frac{1}{2}acos(\frac{\mathbf{U}.\mathbf{V}}{|\mathbf{U}||\mathbf{V}|})$ Angle between twines:

TVO

▲□▼ ▲理▼ ▲ 町

<u>d</u>iji

Fish cages and fishing gears Newton Raphson method Finite element method Finite element for netting

Triangular element Equations Tension in twines Drag on twines Twines flexion Catch pressure

Catch pressure per triangular element

$$p = \frac{1}{2}\rho C_d v^2$$

p: Pressure on the net (Pa), p: density of water (kg/m^3) , C_d: drag coefficient, v: current amplitude (m/s).

Force on vertex 1: $\mathbf{F}_1 = \frac{\mathbf{12} \wedge \mathbf{13}}{2} \frac{p}{3}$

Authors: D.PRIOUR (IFREMER)

May 3, 2014

National project ENERSENNE **Danish Seine**

ADA 単 AEA AEA E SAQ

Top view

Trajectory Powers Pressure

▲□ ▲ □ ▲ □ ▲ □ ▲ □ ▲ □ ▲ □ ▲

Top view

Trajectory Powers Pressure

▲□▼▲□▼▲□▼▲□▼ □ 0 0()

Top view

Trajectory Powers Pressure

Top view

Trajectory Powers Pressure

くしゃ 一日 ・ 山 ・ 山 ・ 山 ・ しゃ

Top view

Trajectory Powers Pressure

A D A A D A A B A A D

Top view

Trajectory Powers Pressure

▲日×▲団×▲団× 団、 (1)

Top view

Trajectory Powers Pressure

▲日×▲団×▲団× 団、 (1)

Top view

Trajectory Powers Pressure

▲日×▲団×▲団× 団、 (1)

Top view

Trajectory Powers Pressure

▲日×▲団×▲団× 団、 (1)

Top view

Trajectory Powers Pressure

SPS 国 ・国 ・国 ・国 ・ 国 ・

Top view

Trajectory Powers Pressure

Side view of trawl

Trajectory Powers Pressure

Side view of trawl

Trajectory Powers Pressure

Side view of trawl

Trajectory Powers Pressure

Side view of trawl

Trajectory Powers Pressure

Side view of trawl

Trajectory Powers Pressure

<国本本団本本団本本団本<<国本本団本本団本

Side view of trawl

Trajectory Powers Pressure

<

Side view of trawl

Trajectory Powers Pressure

▲□▼▲□▼▲□▼▲□▼ (1) (2) (2)

Side view of trawl

Trajectory Powers Pressure

Trajectory Powers Pressure

Trajectory Powers Pressure

MODEL

Trajectory Powers Pressure

Trajectory Powers Pressure

Trajectory Powers Pressure

Rear view

Trajectory Powers Pressure

Rear view

1600.00 1400.00 1200.00 1000.00 800.00 600.CD 400.00 200.00

Trajectory MODEL Powers Pressure

A D Y Y A D Y A D Y A D Y Y A

Trajectory of cables: model and at sea

Trajectory Powers Pressure

Powers during operation

MODEL

Trajectory Powers Pressure

Vertical opening

Trajectory Powers Pressure

Danish Seine National project ENERSENNE Introduction
ENERSENNE national project

Daniel PRIOUR 6 march 2014

introduction

The main objective of the project is to estimate the energy requested for the fishing technique of the Danish seine.

Sensors

Sensors have been largely completed during the week of October 21 to 25, 2013 . This arrangement will be finalized over the coming weeks. The following figures were taken on October 25 .

Figure 1: Electrical cabinet for sensors .

Figure 2 : Torsiometer (blue) attached to the propeller shaft .

Figure 3: Control panel including consumption.

Trawl

The trawl was carried out by fishermen.

Figure 4: Design of the trawl net (blue) and cables (red).

Modeling

The modeling the hauling is completed . In the following figure which represents the hauling, 2 phases were modeled : a first from 0s to 2000s when the boat is fixed and the hauling speed of the main cable is 1 m / s and a second phase when the hauling speed is still 1 m / s and the towing speed is also 1 m / s.

Between 0 and 2000s, it should be noted that the power required to haul the main cable (blue curve) is the sum of the drag on the bottom (red curve) of the hydrodynamic drag of the main cable and other cables (yellow curve) and the drag of the trawl net (green curve). The power consumed by the hauling rises to 15KW during this period.

Between 2000s and 3000s , the boat goes ahead and it can be noted the large increase in drag net (green curve) . Here the power needed to tow the boat is represented by garnet curve. This rises to power 25 KW.

We recall that the propulsion efficiency of fishing boats is around 10%, ie the power consumption of fuel should be in the range of 400KW (15 +25 KW divided by 10%) or fuel consumption 401/h. Sea trials will adjust the model and get results consumption closer to reality.

Figure 5: Powers from the model, for winches (blue), towing the boat (garnet), drag on the bottom (red), hydrodynamic drag cables (yellow) and the hydrodynamic drag of the net (green). The boat is fixed until 2000s after it moves at 1 m / s. Hauling speed is 1 m / s.

Danish Seine National project ENERSENNE Test at sea

A D A A D

Authors: D.PRIOUR (IFREMER)

April 30, 2014

National project ENERSENNE **Danish Seine**

ADA 単 AEA AEA E SAQ

TESTS AT SEA

BOAT

pelagic trawler a set of the set

Danish seine

Les Barges, 24 m long Sables d'Olonne

Les Barges

BOAT TESTS AT SEA

BOAT Foot rope Cables Sensors on the gear Sensors on the boat GPS

Weight: 350Kg

Diameter: 55mm

Foot rope

BOAT TESTS AT SEA

BOAT Foot rope Cables Sensors on the gear Sensors on the boat GPS

Length: 2500m each Total length: 5000m

μh

Diameter: 40mm

cables

BOAT TESTS AT SEA

BOAT Foot rope Cables Sensors on the gear Sensors on the boat GPS

յիլի

- 4 tension sensors on bridles
- 2 pressure sensors on headline and foot rope iliji V

NKE

BOAT TESTS AT SEA

GPS Sensors on the boat Sensors on the gear

Propeller pitch < = > < = > = Danish Seine National project ENERSENNE

GPS

Winches: force speed

Fuel consumption I/h Shaft: couple speed Alternator power

	Broom Broom	actifi specartise	and the	the second		Lo' Destrik		el menulo	(ant teach	ENSERSEMME
		•	1	F					-	
	2				8	5			o manual d	~
	B SECURE	-	ACCULATION.	THE PARTY	(BRYBH	ALEMAKER AT	-Cruebe	LIBE DAG	A STOR	2 H LOUPO
	4	-united			1					0
	2012 1012						the address			Billio
	1			1	1	No alfado		UNIGOUS		E.W.E
									•	*
•										

MARINELEC

BOAT Foot rope Cables Sensors on the gear Sensors on the boat GPS

1 on trawl (lost) 1 on boat 1 on float 65 000 way points each second around 10l floats

For only the haul 13

Foot rope Cables Sensors on the gear Sensors on the boat GPS

GPS

Haul number 6

North (km) 5124.0 -5123.0 -5123.5 -5124.5 -5125.0 -5125.5 -GPS, haul 6, from 10/4/2014 8:33. Surface: 1.9270234, km^2

- 1: shooting right cable
- 2: shooting trawl

- 3: shooting left cable
- 4: hauling float and towing

5: hauling cables and towing

յիլի

5122.5 -

-214.5

-214.0

-213.5

-213.0

-212.5

-212.0

▲□▼▲□▼▲□▼▲□▼ □ ◇ ○

Powers

BOAT

Haul number 6 The Haul 13 The 48 Hauls Route

BOAT TESTS AT SEA

Haul number 6 The Haul 13 The 48 Hauls Route

Tensions

▲□ × ▲□ × ▲□ × ▲□ × ■ < □ × ▲□ × ▲□ ×

Cables length

BOAT TESTS AT SEA

Haul number 6 The Haul 13 The 48 Hauls Route

Propeller pitch

BOAT The Haul number 6 BOAT The Haul 13 TESTS AT SEA The 8 Hauls

Vertical opening

Haul number 6 The Haul 13 The 48 Hauls Route

BOAT TESTS AT SEA

GPS on the middle of the cables

Haul number 6 The Haul 13 The 48 Hauls Route

յիլի

Swept surfaces: around 2km² each haul

BOAT TESTS AT SEA The Haul 13 The 48 Hauls

Consumption per operation

Haul number (The Haul 13 **The 48 Hauls** Route

そこ、 中 ・ 中・ 中・ ゆ・ トロ・

Consumption per surface: around 601/km²

BOAT Haul number (BOAT The Haul 13 TESTS AT SEA The 48 Hauls Route

< 日本< 日本< 日本< 日本< 日本< 日本< 日本< 日本< 日本

Route: fuel vs speed

Haul number 6 The Haul 13 The 48 Hauls Route

Netting modeling by Triangular elements

IMAM 2005 – Lisbon

Daniel PRIOUR

Fish cage

Trawl

Daniel PRIOUR

Daniel PRIOUR

 W_1 nbu Tu du +nbv Tv dv

We = $f_x^1 d_x^1$

- O'Neill and al. (1997) 10 000 twines 1360 triangular elements 742 nodes
- 2 symmetry planes
- $P = \rho g h$

Comparison with flume tank tests (+)

Ifremer

$$P = \frac{1}{2}\rho C dV^2$$

Catch: 40 & 300 Kg Hirtshals

speed : 1.00m/s, stiffness : 11760 N, diameter : 5.87mm, half mesh size : 0.053 m, conv. limit : 0.0004N

5

N

<u>ارم</u>

ω

.ω 5

4

4. 5

IMAM 2005 – Lisbon

Daniel PRIOUR

Cubic fish cage

Cube of 1 m³ 4 dead weights: 3 Kg Current: 1m/s Boulogne/mer

416 triangular elements

symmetry plane

225 nodes

Diameter: 20m

Dead weights: 1200Kg

3 chains: 150m, 10 Kg/m

3 buoys: 2.3 m³

Current: 0.5 m/s

800 nodes

165 bars elements

1400 triangular elements

IMAM 2005 – Lisbon

Daniel PRIOUR

1 symmetry plane

90 bars elements

1111 nodes

2035 triangular elements

Drag of cables on the sea bottom

Drag of cables on the sea bottom

< 回 × < 回 × < 回 × < 回 × < 回 × < 回 × < 回 × < 回 × < 回 × < 回 × <

Authors: D.PRIOUR (IFREMER)

February 19, 2014

Drag of cables on the sea bottom

Present model Problem of discretisation Problem of cable direction Proposal for discretisation Proposal for cable direction

Present model Problem of discretisation Proposal for discretisation Proposal for cable direction

Present model

Problem of discretisation

Problem of cable direction

Proposal for discretisation

Proposal for cable direction

Drag of cables on the sea bottom

Problem of discretisation Problem of cable direction Proposal for discretisation Proposal for cable direction

Cable modelling Elastic sea bottom Sea bottom reaction

Cable modelling

μh

Problem of discretisation Problem of cable direction Proposal for discretisation Proposal for cable direction

> Cable modelling Elastic sea bottom Sea bottom reaction Drag on the sea bottom

Elastic sea bottom

2 nodes of the cable are in the sea bottom

Bottom is elastic (5MN/m)

Problem of discretisation Problem of cable direction Proposal for discretisation Proposal for cable direction

> Cable modelling Elastic sea bottom Sea bottom reaction Drag on the sea bottom

Sea bottom reaction

Digging creates vertical reaction

Fv = K e

e : digging (m)

K : bottom elasticity (N/m)

Fv : vertical reaction (N)

Problem of discretisation Problem of cable direction Proposal for discretisation Proposal for cable direction

> Cable modelling Elastic sea bottom Sea bottom reaction Drag on the sea bottom

Drag on the sea bottom

Fh = k FvDrag due to the vertical reaction and speed

k = 0.5

Fv : vertical reaction (N)

Fh : horizontal wearing (N)

<
 <

 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <
 <

Present model Problem of discretisation Problem of cable direction Proposal for discretisation Proposal for cable direction

> Sea bottom reaction Sea bottom reaction Wearing on the bottom reactio

Sea bottom reaction

If the discretisation is finer

more nodes are in bottom contact

The same digging will lead to too large vertical reaction

<
 <

 <
 <

Present model Problem of discretisation Problem of cable direction Proposal for discretisation Proposal for cable direction

> Sea bottom reaction Sea bottom reaction Wearing on the bottom reaction

Sea bottom reaction

mm) Generally it is not a problem because the digging is very small (few fv1 + fv2 + fv3 = Fv1 + Fv2

Present model Problem of discretisation Problem of cable direction Proposal for discretisation Proposal for cable direction

> Sea bottom reaction Sea bottom reaction Wearing on the bottom reaction

Wearing on the bottom reaction

fh1 + fh2 + fh3 = Fh1 + Fh2But the drag on the bottom will be the same

 Drag of cables on the sea bottom

μh We suspect a larger normal drag than the tangential one The drag depends on the speed direction only

The drag is independent of cable direction

Drag

Drag

Proposal for cable direction Problem of cable direction Proposal for discretisation Problem of discretisation Present mode

K : floattability in the sea bottom (N/m3)Fvb = (e2-e1) diameter I K / 2Fva = e1 diameter | K

Sea bottom reaction coarse

Problem of discretisation Problem of cable direction Proposal for discretisation Proposal for cable direction

> Sea bottom reaction coarse Sea bottom reaction fine

Present mode

Sea bottom reaction fine

Present model Problem of discretisation Problem of cable direction **Proposal for discretisation** Proposal for cable direction

> Sea bottom reaction coarse Sea bottom reaction fine

Proposal for cable direction

Present model Problem of discretisation Problem of cable direction Proposal for discretisation

Drag

Speed: v = vn + vtNormal force: Fhn = knFvTransverse force: Fht = ktFvwith probably kn > ktif v < vlimit weigh by v/vlimit

Drag and transverse forces depends on angle of attack Norway, DEMat 11, Split, Croatia, 26-28 October, 2011 Birger Enerhaug, SINTEF Fisheries and Aquaculture, Trondheim,

Birger Enerhaug

Present model Problem of discretisation Problem of cable direction Proposal for discretisation Proposal for cable direction

> Drag Tests Enerhaug Dematt 2011

A finite element method for netting: application to

Fish cages and fishing gears

A finite element method for netting: application to fish cages and fishing gears

Daniel Priour

December 6, 2012

 $\mathbf{2}$

Contents

In	trodı	iction	iii
1	Fini 1.1 1.2 1.3 1.4 1.5 1.6	te element method Principle A simple example Nodes position, forces on nodes, and stiffness matrix Local and global forces and stiffness Symmetry Boundary conditions	1 2 3 6 8 11
2	Equ 2.1 2.2	ilibrium calculationNewton-Raphson method2.1.1One dimension2.1.2Two dimensions2.1.3Several dimensions2.1.4Singularity of the stiffness matrixOther resolution methods2.2.1Newmark method2.2.2Energy minimization	 13 14 14 17 20 22 24 24 24
3	The 3.1 3.2	triangular finite element for nettingState-of-the-art of numerical modelling for nets3.1.1Constitutive law for nets3.1.2Twine numerical methodThe finite element for netting3.2.1The basic method: direct formulation	 27 28 28 28 29 32
	3.3	3.2.2 Metric of the triangular elementThe forces on the netting3.3.1 Twine tension in diamond mesh3.3.2 Twine tension in hexagonal mesh3.3.3 Hydrodynamic drag3.3.4 Twine flexion in Netting plane3.3.5 Twine flexion outside the netting plane3.3.6 Fish catch pressure3.3.7 Dynamic: force of inertia3.3.8 Dynamic: drag force3.3.9 Buovancy and weight	$\begin{array}{c} 33\\ 37\\ 37\\ 41\\ 47\\ 56\\ 58\\ 63\\ 65\\ 66\\ 67\\ \end{array}$

4	The	bar finite element for cable	71					
	4.1	Principle	72					
	4.2	Tension on bars	73					
		4.2.1 Force vector	73					
		4.2.2 Stiffness matrix	74					
	4.3	Bending of cables	75					
		4.3.1 Force vector	75					
		4.3.2 Stiffness matrix	78					
	4.4	Drag on cables	79					
5	The	node element	87					
	5.1	Principle	88					
	5.2	Contact on bottom	89					
	0.2	5.2.1 Force vector	89					
		5.2.2 Stiffness matrix	89					
	53	Drag on bottom	90					
	0.0	531 Force vector	00 00					
		5.3.2 Stiffnose matrix	02					
		J.J. 2 Juniess matrix	94					
6	Vali	dation	95					
	61	Tractrix	96					
	6.2	Diamond mesh netting stretched by its weight	97					
	63	Havagenal most not hold vertically in the current	00					
	6.4	Hydrostatia processo	100					
	0.4 6 5	Cod and with actable the summent	100					
	0.0		101					
	0.0 Full cod-end							
	б.7	Bottom trawl	103					
	6.8	Cubic fish cage	104					
	6.9	Bending of cable	105					

7 References

107

Introduction

INTRODUCTION

Chapter 1 Finite element method

1.1 Principle

The finite element method is a method that, at first, approximates the characteristics of a global structure by dividing it into smaller substructures called finite elements. These approximations, in the present case, are performed to estimate efforts on the vertices of these elements. These efforts depend on the position of the vertices of finite elements.

In a second step, these elements are assembled to reconstruct the overall structure and thus obtain the efforts on this structure. These efforts depend on the overall position of the vertices of the elements.

In a third step, the position of the vertices that give a zero overall effort is calculated. This position corresponds to the equilibrium position and therefore to the expected shape of the overall structure.

Field of numerical points

A field of nodes on the structure to be studied is first created. This field of numerical nodes is created so that there are many points in areas of high strain gradient. These nodes serve as the basis for creating finite elements.

The user is often in a position where he does not know *a priori* which areas are with high deformation gradients. The equilibrium positions are calculated successively, refining by adding nodes in areas with steep gradients and removing nodes in areas with low gradients.

Finite elements

Finite elements are created on this field of nodes. These finite elements, in the case of our model, are of several types, depending on whether they are dedicated to cables, bars or nets.

Triangular elements are used for nets (Figure 1.1), since the net is a surface. It seems easier to use the simplest surface, namely, the triangle. The curvature of the net can be represented using several triangular elements. Bar elements are used for cables (Figure 1.2).

1.2 A simple example

The following simple example shows the principle of splitting a global structure into several finite elements. A circle with a diameter of 1m has a perimeter of π ($2\pi R$). To assess this perimeter by the finite element approach, the circle is divided into n identical parts (Figure 1.3). The perimeter is the sum of the length of each circle arc. The length of the arc can be approximated by the circle cord. Each cord has a length of $2Rsin(\frac{\alpha}{2})$.

The perimeter of the circle can be assessed by n times each cord length. Figure 1.4 shows the evaluation accuracy of the perimeter in function of the number of sectors for the approximation. The larger the number of elements, the greater the accuracy.

In other words, a parameter (here the perimeter) can be assessed by dividing the problem into finite elements (sectors) to be able to make acceptable approximations (the arc length approximated by the cord length). The parameter is finally assessed by rebuilding all the finite elements (sum of cord lengths). The principle of the finite element method is to discretize a structure in small (finite) elements to make acceptable approximations in each element and rebuild all the finite elements for assessing parameters on the structure.

Figure 1.1: The diamond mesh netting (a) is decomposed into triangular elements (b). The approximation in each triangle is that twines are parallel and therefore have the same deformation, and that the twines are elastic (chapter 3 page 27).

Figure 1.2: The cable (a) is decomposed into bars elements (b). The approximation in each bar is that bars are straight and elastic (chapter 4 page 71).

1.3 Nodes position, forces on nodes, and stiffness matrix

In case the relationship between efforts on nodes (vertices of the elements) and their position is established, F(X) is known:

Figure 1.3: Polygon of n cords inside the circle. The length of each cord is 2 R $\sin(\alpha/2)$. The circle perimeter is assessed by n times each cord length.

Figure 1.4: Perimeter of the polygon (dots) in function of the number of cords (n) compared with the perimeter of the circle (line). The cross corresponds to the cords in Figure 1.3.

F: force on the nodes (N),

X: node position (m).

The objective of the method is to estimate the equilibrium position (\mathbf{X}_{final}) , that is to say, such that

 $\mathbf{F}(\mathbf{X}_{final}) = 0$

The Newton-Raphson method is generally used to obtain this position (\mathbf{X}_{final}) from an initial unbalanced position $(\mathbf{X}_{initial})$. This method iteratively calculates the position at equilibrium. This method relies on the definition of the following derivative:

$$F'(\mathbf{X}) = rac{\mathbf{F}(\mathbf{X} + \mathbf{h}) - \mathbf{F}(\mathbf{X})}{\mathbf{h}}$$

F': derived efforts with respect to position (N/m), h: nodes displacement (m).

The displacement **h** is sought if **X** is not the equilibrium position and such that $\mathbf{X} + \mathbf{h}$ is in equilibrium. Under these conditions:

 $\mathbf{F}(\mathbf{X}+\mathbf{h})=0$

The previous equation of the derivative gives

$$\mathbf{h} = \frac{\mathbf{F}(\mathbf{X})}{-F'(\mathbf{X})}$$

The term $-F'(\mathbf{X})$ is called the stiffness matrix of the structure. Obviously **h** can be large, which means that the definition of the derivative is not completely respected. An iterative calculation is required:

$$\mathbf{X}_{k+1} = \mathbf{X}_k + \frac{\mathbf{F}(\mathbf{X}_k)}{-F'(\mathbf{X}_k)}$$

k: iteration.

Starting from a position \mathbf{X}_k , $\mathbf{F}(\mathbf{X}_k)$ and $-F'(\mathbf{X}_k)$ are calculated, then the displacement \mathbf{h}_k is deducted and then the next position \mathbf{X}_{k+1} . The iterative calculation is stopped when convergence is achieved, for example when the force $\mathbf{F}(\mathbf{X}_k)$ converges to $\mathbf{0}$.

1.4 Local and global forces and stiffness

In the chapters 3, 4 and 5 the forces and the stiffness are described in local terms.

As mentionned earlier, the structure is split into finite elements in which forces and stiffness are calculated locally. That gives local forces \mathbf{f} and local stiffness k. For example in case of element involving four coordinates, they are as in following:

$$\mathbf{f} = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$$
$$k = \begin{pmatrix} e & f & g & h \\ i & j & k & l \\ m & n & o & p \\ q & r & s & t \end{pmatrix}$$

To reassemble the finite elements in the global structure, the local forces and the local stiffness have to be added to the global ones (\mathbf{F} , K).

For example, if **f** and k define the force and the stiffness on an element that involves node components 3, 4, 7, and 8, taking this element into account in the global structure would mean that the local force **f** and stiffness k have to be added to the global force **F** and stiffness K, as in the following:

$$F(3) = F(3) + a$$

 $F(4) = F(4) + b$
 $F(7) = F(7) + c$
 $F(8) = F(8) + d$

$$\begin{array}{lll} K(3,3)=K(3,3)+e & K(3,4)=K(3,4)+f & K(3,7)=K(3,7)+g & K(3,8)=K(3,8)+h \\ K(4,3)=K(4,3)+i & K(4,4)=K(4,4)+j & K(4,7)=K(4,7)+k & K(4,8)=K(4,8)+l \\ K(7,3)=K(7,3)+m & K(7,4)=K(7,4)+n & K(7,7)=K(3,7)+o & K(7,8)=K(7,8)+p \\ K(8,3)=K(8,3)+q & K(8,4)=K(8,4)+r & K(8,7)=K(8,7)+s & K(8,8)=K(8,8)+t \end{array}$$

In other words:

1.4. LOCAL AND GLOBAL FORCES AND STIFFNESS

	(•	•								•)
		•	•	•		•					
		•	•	$\cdot + e$	$\cdot + f$	•		$\cdot + g$	$\cdot + h$		
		•	·	$\cdot + i$	$\cdot + j$	•	•	$\cdot + k$	$\cdot + l$	•	
K =		•	•	•	•	•	•	•	•	•	
$\Lambda -$		•	•	•	•	•	•	•	•	•	
		•	•	$\cdot + m$	$\cdot + n$	•	•	$\cdot + o$	$\cdot + p$	•	
		•	·	$\cdot + q$	$\cdot + r$	•	•	$\cdot + s$	$\cdot + t$	•	
		•	•	•	•	•	•	•	•	•	•
		•	•	•	•	•	•	•	•	•	•]

1.5 Symmetry

In the case of symmetrical structures in a symmetrical environment it could be advantageous to use this symmetry to reduce the node number and therefore the computation times.

Figure 1.5 shows a simple bar with a symmetry plane. The plane of symmetry is OYZ and only the node of components a, b, and c, is on the plane of symmetry.

The calculation of force vector on the bar P regardless of the symmetry will give a force such as (cf. Figure 1.5):

$$\mathbf{F} = \begin{vmatrix} F_a \\ F_b \\ F_c \\ F_d \\ F_e \\ F_f \end{vmatrix}$$

The stiffness matrix would be:

$$K = \begin{vmatrix} K_{aa} & K_{ab} & K_{ac} & K_{ad} & K_{ae} & K_{af} \\ K_{ba} & K_{bb} & K_{bc} & K_{bd} & K_{be} & K_{bf} \\ K_{ca} & K_{cb} & K_{cc} & K_{cd} & K_{ce} & K_{cf} \\ K_{da} & K_{db} & K_{dc} & K_{dd} & K_{de} & K_{df} \\ K_{ea} & K_{eb} & K_{ec} & K_{ed} & K_{ee} & K_{ef} \\ K_{fa} & K_{fb} & K_{fc} & K_{fd} & K_{fe} & K_{ff} \end{vmatrix}$$

In this case the ranking of the node coordinates is a, b, c, d, e, f.

Figure 1.5: The bar P has a node (a, b, c) on the symmetry plane. The other node (d, e, f) is outside the symmetry plane. The symmetric bar is Q.

The calculation of the total force vector on the bar taking into account the symmetry will give a force such as:

1.5. SYMMETRY

$$\mathbf{F} = \begin{vmatrix} F_{a} & - & F_{a} \\ F_{b} & + & F_{b} \\ F_{c} & + & F_{c} \\ F_{d} & + & 0 \\ F_{e} & + & 0 \\ F_{f} & + & 0 \end{vmatrix}$$

The stiffness matrix would be:

$$K = \begin{vmatrix} K_{aa} + K_{aa} & K_{ab} - K_{ab} & K_{ac} - K_{ac} & K_{ad} & K_{ae} & K_{af} \\ K_{ba} - K_{ba} & K_{bb} + K_{bb} & K_{bc} + K_{bc} & K_{bd} & K_{be} & K_{bf} \\ K_{ca} - K_{ca} & K_{cb} + K_{cb} & K_{cc} + K_{cc} & K_{cd} & K_{ce} & K_{cf} \\ K_{da} & K_{db} & K_{dc} & K_{dd} & K_{de} & K_{df} \\ K_{ea} & K_{eb} & K_{ec} & K_{ed} & K_{ee} & K_{ef} \\ K_{fa} & K_{fb} & K_{fc} & K_{fd} & K_{fe} & K_{ff} \end{vmatrix}$$

That gives for a symmetry plane OXY passing by the node of coordinates a, b, c:

$$\mathbf{F} = \begin{vmatrix} 0 \\ 2.F_b \\ 2.F_c \\ F_d \\ F_e \\ F_f \end{vmatrix}$$
$$K = \begin{vmatrix} 2.K_{aa} & 0 & 0 & K_{ad} & K_{ae} & K_{af} \\ 0 & 2.K_{bb} & 2.K_{bc} & K_{bd} & K_{be} & K_{bf} \\ 0 & 2.K_{cb} & 2.K_{cc} & K_{cd} & K_{ce} & K_{cf} \\ K_{da} & K_{db} & K_{dc} & K_{dd} & K_{de} & K_{df} \\ K_{ea} & K_{eb} & K_{ec} & K_{ed} & K_{ee} & K_{ef} \\ K_{fa} & K_{fb} & K_{fc} & K_{fd} & K_{fe} & K_{ff} \end{vmatrix}$$

That gives for a symmetry plane OYZ passing by the node of coordinates a, b, c:

$$\mathbf{F} = \begin{vmatrix} 2.F_a \\ 0 \\ 2.F_c \\ F_d \\ F_e \\ F_f \end{vmatrix}$$

$$K = \begin{vmatrix} 2.K_{aa} & 0 & 2.K_{ac} & K_{ad} & K_{ae} & K_{af} \\ 0 & 2.K_{bb} & 0 & K_{bd} & K_{be} & K_{bf} \\ 2.K_{bc} & 0 & 2.K_{cc} & K_{cd} & K_{ce} & K_{cf} \\ K_{da} & K_{db} & K_{dc} & K_{dd} & K_{de} & K_{df} \\ K_{ea} & K_{eb} & K_{ec} & K_{ed} & K_{ee} & K_{ef} \\ K_{fa} & K_{fb} & K_{fc} & K_{fd} & K_{fe} & K_{ff} \end{vmatrix}$$

That gives for a symmetry plane OZX passing by the node of coordinates a, b, c:

$$\mathbf{F} = \left| \begin{array}{c} 2.F_a \\ 2.F_b \\ 0 \\ F_d \\ F_e \\ F_f \end{array} \right|$$

$$K = \begin{vmatrix} 2.K_{aa} & 2.K_{ab} & 0 & K_{ad} & K_{ae} & K_{af} \\ 2.K_{ba} & 2.K_{bb} & 0 & K_{bd} & K_{be} & K_{bf} \\ 0 & 0 & 2.K_{cc} & K_{cd} & K_{ce} & K_{cf} \\ K_{da} & K_{db} & K_{dc} & K_{dd} & K_{de} & K_{df} \\ K_{ea} & K_{eb} & K_{ec} & K_{ed} & K_{ee} & K_{ef} \\ K_{fa} & K_{fb} & K_{fc} & K_{fd} & K_{fe} & K_{ff} \end{vmatrix}$$

1.6 Boundary conditions

There are two kinds of boundary conditions: the mechanical and the geometric.

The mechanical boundary conditions are defined through forces on the structure. Such boundary conditions could be the effect of the sea bed; for example, a mooring chain lands on the bottom. This specific case is described in section 5.2 (page 89).

The geometric boundary conditions consist here in displacement boundary conditions; for example, an anchor in the sea bed could be taken into account by a null displacement, or a boat towing a gear could be defined with a null displacement in moving water. These geometric conditions are actually the conditions discussed in this section.

A null displacement for node coordinate c could be taken into account by modifying the force and the stiffness matrix. Generally speaking, the force and the matrix stiffness are such as:

$$\mathbf{F} = \begin{vmatrix} F_a \\ F_b \\ F_c \\ F_d \\ F_e \\ F_f \end{vmatrix}$$

$$\begin{vmatrix} K_{aa} & K_{ab} & K_{ac} & K_{ad} & K_{ae} & K_{af} \\ K_{ba} & K_{bb} & K_{bc} & K_{bd} & K_{be} & K_{bf} \\ K_{aa} & K_{cb} & K_{ac} & K_{ad} & K_{ca} & K_{af} \end{vmatrix}$$

$$K = \begin{vmatrix} K_{ba} & K_{bb} & K_{bc} & K_{bd} & K_{be} & K_{bf} \\ K_{ca} & K_{cb} & K_{cc} & K_{cd} & K_{ce} & K_{cf} \\ K_{da} & K_{db} & K_{dc} & K_{dd} & K_{de} & K_{df} \\ K_{ea} & K_{eb} & K_{ec} & K_{ed} & K_{ee} & K_{ef} \\ K_{fa} & K_{fb} & K_{fc} & K_{fd} & K_{fe} & K_{ff} \end{vmatrix}$$

When the null displacement for node coordinate c is taken into account, the force and the stiffness matrix become:

$$\mathbf{F} = \begin{vmatrix} F_{a} \\ F_{b} \\ 0 \\ F_{d} \\ F_{e} \\ F_{f} \end{vmatrix}$$
$$K = \begin{vmatrix} K_{aa} & K_{ab} & 0 & K_{ad} & K_{ae} & K_{af} \\ K_{ba} & K_{bb} & 0 & K_{bd} & K_{be} & K_{bf} \\ 0 & 0 & 1 & 0 & 0 & 0 \\ K_{da} & K_{db} & 0 & K_{dd} & K_{de} & K_{df} \\ K_{ea} & K_{eb} & 0 & K_{ed} & K_{ee} & K_{ef} \\ K_{fa} & K_{fb} & 0 & K_{fd} & K_{fe} & K_{ff} \end{vmatrix}$$

These modifications of force and stiffness matrix ensure that the displacement of coordinate c is null.

CHAPTER 1. FINITE ELEMENT METHOD
Chapter 2

Equilibrium calculation

2.1 Newton-Raphson method

Finite element methods generally use the Newton-Raphson method (Deuflhard 2004) for the calculation of the equilibrium position of a mechanical structure. The equilibrium position corresponds to that position of the structure in which the sum of forces equals 0. In what follows a few simple examples are given to explain the method under three cases: one dimension, two dimensions and several dimensions.

2.1.1 One dimension

A spring (Figure 2.1) equilibrium is reached when the weight is equilibrated by the spring force. At this position the sum of forces equals 0. This position can be calculated using the Newton-Raphson method. In this example there is just one dimension: the vertical position (x) of the mass relatively to the spring fixation which also equals the length of the spring.

Figure 2.1: The equilibrium of the spring is due to the mass weight and the spring force.

The spring equilibrium is calculated by writing the force on the mass: the weight is -Mg (N), and the force of the spring is $+K\frac{x-l_0}{l_0}$ (N).

 With

M: mass (kg),

g: acceleration of gravity (m/s^2) ,

K: spring stiffness (N),

x: position of the mass along the spring axis relative to the fixed point of the spring (m),

x: length of the stretched spring (m).

In this example the stiffness is not constant in order to give a clearer explanation of the Newton-Raphson method. K is equals to Ax. That means that longer the spring is, the stiffer it is.

The sum of forces on the mass (curve on figure 2.2) is

$$F(x) = K\frac{x - l_0}{l_0} - Mg$$

or, following the previous relations,

$$F(x) = Ax\frac{x - l_0}{l_0} - Mg$$

14

Figure 2.2: Sum of forces on the mass function of spring length. Three Newton-Raphson iterations starting at x = 2.8m are displayed. The vector tangent at x_0 is shown.

Obviously at the equilibrium F(x) = 0. It is clear that this simple equation has an analytical solution, which is

$$x = \frac{\sqrt{l_0 A (4 g M + l_0 A)} + l_0 A}{2 A}$$

The Newton-Raphson method could be used to find the length of the spring (x) at the equilibrium. This method requires knowing the force and the derivative of the force relatively to the position.

The method is iterative and approximates the force curve by its tangent (shown in Figure 2.2). From a position (x_k) , the force $(F(x_k))$ and the derivative of force $(F'(x_k))$ are calculated, and a new position (x_{k+1}) can be found. This new position is generally closer to the equilibrium and is calculated as follows:

$$x_{k+1} = x_k + \frac{F(x_k)}{-F'(x_k)}$$

Figure 2.2 shows three iterations with an initial value x_0 of the spring length of 2.8m. With:

The stiffness A = 1000 N/m,

The mass M = 10kg,

The acceleration of gravity $g = 9.81 m/s^2$,

The unstretched length of the spring $l_0 = 1m$.

The stretched length at the equilibrium is 1.09m. That means that the spring stretches 9%.

Figure 2.3: Residue of force for each Newton-Raphson method iteration.

After five iterations the equilibrium is reached or more exactly |F(x)| < 0.1N. The figure 2.2 shows 3 iterations along the curve of force. Figure 2.3 represents the reduction of the force residue (|F(x)|) with the five iterations.

2.1.2 Two dimensions

Figure 2.4: Spring with two degrees of freedom: the vertical and horizontal positions of the mass. The equilibrium is due to the mass weight and the spring force.

In this section a simple example in two dimensions is given (Figure 2.4): a spring with two degrees of freedom, i.e., the horizontal (x) and the vertical (y) positions of the mass relative to the spring fixation. The equilibrium of the system is due to the position of the mass along the vertical and the horizontal. Figure 2.5 shows the variation of the norm of the residue of force $(\sqrt{F_x^2 + F_y^2})$ on the mass due to the positions along x and y of the mass. The equilibrium point is noted by the largest dot.

The stiffness (K) of the spring is not constant: K is equal to Al. That means that the longer the spring is, the stiffer it is. In this condition the horizontal and vertical forces on the mass are due to the spring length and the weight of the mass:

$$F_x = T\frac{x}{l}$$
$$F_y = T\frac{y}{l} - Mg$$

With:

$$T = Al \frac{l - l_0}{l_0}$$
$$l = \sqrt{x^2 + y^2}$$

In this case the derivative of the forces is calculated relatively to x and y:

$$\frac{\partial F_x}{\partial x} = A \frac{l - l_0}{l_0} + A \frac{x^2}{ll_0}$$
$$\frac{\partial F_x}{\partial y} = A \frac{xy}{ll_0}$$
$$\frac{\partial F_y}{\partial x} = A \frac{yx}{ll_0}$$
$$\frac{\partial F_y}{\partial y} = A \frac{l - l_0}{l_0} + A \frac{y^2}{ll_0}$$

Figure 2.5: Norm of the force $(Z = \sqrt{F_x^2 + F_y^2})$ function of mass coordinates (X, Y). The largest dot is the equilibrium position. The smallest dots are the Newton-Raphson iterations starting at x = 0.9m and y = 1.9m.

The Newton-Raphson method accesses the equilibrium solution through iterations. At each iteration the new position is calculated by the following relation:

$$\mathbf{X}_{k+1} = \mathbf{X}_k + \frac{\mathbf{F}(\mathbf{X}_k)}{-F'(\mathbf{X}_k)}$$

With:

$$\mathbf{X}_{k} = \begin{vmatrix} x_{k} \\ y_{k} \end{vmatrix}$$
$$\mathbf{F}(\mathbf{X}_{k}) = \begin{vmatrix} F_{x}(X_{k}) \\ F_{y}(X_{k}) \end{vmatrix}$$

The ratio $\frac{\mathbf{F}(\mathbf{X}_k)}{-F'(\mathbf{X}_k)}$ is the displacement \mathbf{h} , such as $\mathbf{F}(\mathbf{X}_k) = -F'(\mathbf{X}_k)\mathbf{h}$. With these equations the equilibrium position is assessed (Figure 2.5). Figure 2.6 represents the reduction of the force residue with the iterations.

Figure 2.6: Residue of force $(\sqrt{F_x^2 + F_y^2})$ for each Newton-Raphson method iteration.

2.1.3 Several dimensions

Main variables

The positions of the nodes are in vector \mathbf{X} , the forces on the nodes are in vector \mathbf{F} , and the stiffness matrix is K; x_i and F_i refer to the same node along the same axis.

These variables are as follows:

From these three variables the displacement vector (\mathbf{h}) can be calculated by solving the following system of linear equations:

$\mathbf{h}K = \mathbf{F}$

Iterations

As mentioned earlier, the Newton-Raphson-method is an iterative one. The steps are as follows: From the position (\mathbf{X}_k) of the nodes resulting from iteration k:

$$\mathbf{X}_{k} = \begin{vmatrix} x_{k1} \\ x_{k2} \\ \vdots \\ \vdots \\ x_{kn} \end{vmatrix}$$

The force (\mathbf{F}_k) on the nodes and the stiffness (K_k) matrix are calculated:

$$\mathbf{F}_{k} = \begin{vmatrix} F_{k1} \\ F_{k2} \\ \vdots \\ F_{kn} \end{vmatrix}$$

20

2.1. NEWTON-RAPHSON METHOD

The node displacements (\mathbf{h}_k) are calculated:

$$\mathbf{h}_k K_k = \mathbf{F}_k$$

The new position of nodes are deduced:

$$\mathbf{X}_{k+1} = \mathbf{X}_k + \mathbf{h}_k$$

2.1.4 Singularity of the stiffness matrix

In some cases the stiffness matrix (K) could be singular. In this case solving $\mathbf{h}K = \mathbf{F}$ (section 2.1.3 page 20) could lead to a very large displacement $(h_i >> 1)$ and to divergence of the method.

An example can be shown with the unstretched horizontal bar of Figure 2.7. This bar has two extremities. If the first extremity (on the left on Figure 2.7) has the horizontal and vertical coordinates (0, 0), the position vector is:

$$\mathbf{X} = \begin{vmatrix} 0\\0\\x_3\\0 \end{vmatrix}$$

With $x_3 \neq 0$

If the force on the second extremity is vertical, the force vector is:

$$\mathbf{F} = \begin{vmatrix} 0\\0\\0\\F_4 \end{vmatrix}$$

With $F_4 \neq 0$

As we will see in section 4.2 (page 73) the stiffness matrix is:

$$K = \begin{vmatrix} K_{11} & 0 & -K_{11} & 0 \\ 0 & 0 & 0 & 0 \\ -K_{11} & 0 & K_{11} & 0 \\ 0 & 0 & 0 & 0 \end{vmatrix}$$

The matrix is singular. This is due to the derivative $\frac{\partial F_4}{\partial x_4}$, which is equal to 0 in this case of an unstretched horizontal bar. i) If the bar is not horizontal this derivative will not be equal to 0, because the derivative of the bar length will not equal 0. ii) If the bar is in tension (or compression), even horizontal, the derivative $\frac{\partial F_4}{\partial x_4}$ will not equal 0 because the derivative of the tension direction is not equal to 0.

Figure 2.7: This bar is articulated around its left extremity. A vertical force (F_4) is applied on the right extremity. This unstretched bar displays a zero stiffness along the vertical.

To avoid problems due to singularity, precautions are available, as described below.

2.1. NEWTON-RAPHSON METHOD

Additional stiffness

A simple way is to add an arbitrary value (α) along the diagonal of the stiffness matrix, such that the previous matrix becomes:

$$K = \begin{vmatrix} K_{11} + \alpha & 0 & -K_{11} & 0 \\ 0 & \alpha & 0 & 0 \\ -K_{11} & 0 & K_{11} + \alpha & 0 \\ 0 & 0 & 0 & \alpha \end{vmatrix}$$

The added value (α) could decrease along the Newton-Raphson iterations. This added value (α) does not modify the equilibrium position, but only the way to reach this equilibrium.

Additional mechanical behaviour

Another way to remove singularity is to add further mechanical behaviour. For example, if this bar is in a fluid, air, or water, a vertical displacement will generate a drag in the opposite direction, meaning that the components of the stiffness matrix K_{22} and K_{44} will be not equal to 0.

Displacement limit

A displacement limit could be imposed to avoid too large a value:

```
\mathbf{h}K=\mathbf{F}
```

```
 \begin{aligned} if \mathbf{h}_i > limit \quad \mathbf{h}_i = \quad limit \\ if \mathbf{h}_i \leq limit \quad \mathbf{h}_i = \quad \mathbf{h}_i \end{aligned}
```

2.2 Other resolution methods

2.2.1 Newmark method

The Newmark method is used to find the equilibrium position of a mechanical structure. The following example in one dimension explains the method in a simplified way.

The method consists first in calculating forces on the structure, then calculating the acceleration on the structure using the dynamic equation $(F = M\gamma)$. From this acceleration and using a time step, the speed and the new position of the structure can be calculated (Chang 2004).

Figure 2.8: Force on the mass function of spring length and Newmark explicit method iterations.

For the example displayed in Figure 2.1, the equilibrium calculation follows the path shown in Figure 2.8 with a time step of 0.04s. Figure 2.9 shows the residue of force. This calculation follows the Newmark explicit method (Chang 2004).

2.2.2 Energy minimization

This method consists of finding the position of the structure that leads to the minimum of the energy. The energy involved here is the energy due to the conservative forces only. A conservative force is a force that leads to a variation of energy between two positions independent of the path between these two positions. The main conservative forces involved in marine structures are weight and tension in elastic cables and netting twines.

In these cases the energy between two positions are quite simple to calculate:

$$E_W = W\Delta h$$
$$E_T = \frac{1}{2}K\Delta x^2$$

 E_W : energy due to the weight (J),

24

Figure 2.9: Residue of force for each Newmark explicit method iterations.

W: weight (N),

 Δh : altitude variation between the two positions (m),

 E_T : energy due to the tension (J),

K: constant cable stiffness (N/m),

 Δx : cable length variation between the two positions (m).

Some forces are not conservative, as in the case of drag force. In such case the energy consumed by the drag depends on the path followed by the structure between the two positions.

Due to non conservative forces, the method of minimization of energy is not quite adapted to solve the equilibrium of marine structures. In case this method is used, the drag forces could be transformed into constant force.

CHAPTER 2. EQUILIBRIUM CALCULATION

Chapter 3

The triangular finite element for netting

3.1 State-of-the-art of numerical modelling for nets

3.1.1 Constitutive law for nets

There is little or no published work on the constitutive law for nets. Only Rivlin (1955), to our knowledge, begins to express the stresses in a net surface, but only under conditions of symmetrical deformation twine. If such constitutive law could be defined, usual finite element softwares could be adapted for nettings.

3.1.2 Twine numerical method

The twine numerical method includes almost all the work on numerical modelling of the net (Ferro 1988; Bessonneau and Marichal 1998; Niedzwiedz and Hopp 1998; Tsukrov et al. 2003; Le Dret et al. 2004; Lee et al. 2005). The initial idea is simple: the twines of the net are modelled by bars (called here numerical twines). Then a few adjustments are required.

The twines could be modelled by two bars to account for the shortening, which appears as an angle between the bars. The twines could be modelled with a single bar, but Young's modulus in compression is almost zero to account for the shortening. Given the large number of twines in some structures (up to one million), a numerical bar refers to several true twines (Figure 3.1). This is called globalization.

Figure 3.1: Control net 50 meshes high by 50 and 45 wide (a), with a ratio of globalization of 5 (b) and 10 (c).

The major difficulty with this method of globalization lies in the description of the net by numerical twines. Indeed, a structure is very often the assembly of several panels of nets. Therefore, the creation of numerical twines in a panel will generate nodes on its contour. These nodes are the basis for the creation of numerical twines of the adjacent panel (Figures 3.2 and Figure 3.3).

Figure 3.2 (a) shows four panels (50 by 50 meshes) whose numerical twines connect perfectly (Figure 3.2 (b)): the nodes on the edges are perfectly aligned with the nodes of the adjacent panels.

Figure 3.3 (a) shows the same example, except that panel 1 is only 45 meshes horizontally. In this case the nodes on the borders do not connect perfectly between panels 4 and 1 (Figure

Figure 3.2: Structure of four panels of 50 by 50 meshes (a) discretized in numerical twines (b; globalization ratio of 10): the connection between numerical nodes on the borders of panels is perfect (black dots for the border between panels).

3.3 (b)), whereas the connections are perfect on the other three seams. This approach requires facilities such modification of the design of the netting panels. These facilities are not well described in the literature dedicated to this method.

3.2 The finite element for netting

Triangular elements have been developed to model the net (Figure 3.4). A number of approximations are made in these triangular elements, with the aim of calculating the forces at the vertices of these elements. These are calculated based on the positions of the vertices. The basic assumption in modelling nets by triangular elements is that the twines remain parallel. Under these conditions the twines of the same direction have the same deformation. The second assumption is that the twines are modelled as elastic rods.

One difficulty with the method of numerical globalized twines (or numerical twines) was described earlier: nodes on the edges of the panels do not always coincide perfectly (Figure 3.3 (b)). This difficulty disappears with triangular elements, since the discretization of a netting panel is independent of the discretization of adjacent panels, except on the border. The same panels of Figure 3.3 are discretized in Figure 3.5 with triangular elements. Panel 2 in (Figure 3.5 (a)) is discretized with large triangular elements and in (Figure 3.5 (b)) with smaller elements. It is clear that triangular element discretization is done very easily, unlike the numerical twines technique. This flexibility in the creation of triangular elements overcomes the cumbersome tool for creating globalized twines. This burden results from many different cases to be processed and consequently adjustments that sometimes make it impossible to fully describe the structure

Figure 3.3: (a) Four netting panels 50 by 50 meshes except for panel 1, which has only 45 meshes horizontally. (b) The globalization of 10 leads the nodes on the common border of panels 1 and 4 to not connect perfectly: panel 1 has five nodes on its bottom border, while the top border of panel 4 has six nodes (black dots).

to be studied with the method of numerical twines.

Figure 3.4: The diamond mesh (a) is decomposed into triangular elements (b). The approximation in each triangle is that twines are parallel and therefore have the same deformation, and that the twines are elastic.

Figure 3.5: Case identical to Figure 3.3. Although the netting in panel 1 has only 45 meshes horizontally, the triangular element discretization is easy. The step size of panel 2 is larger in (a) than in (b).

3.2.1 The basic method: direct formulation

The triangular finite element dedicated to diamond mesh nets is described here.

Figure 3.6: A triangular element: the sides of the triangle are linear combinations of twine vectors $(\mathbf{U} \text{ and } \mathbf{V})$. The coordinates in twine number are noted. The origin of theses coordinates is the intersection of \mathbf{U} and \mathbf{V} .

The triangular element is defined by its three vertices, which are connected to the net. The coordinates of the vertices in number of twine vectors are then constant, whatever the deformation of the triangle. Figure 3.6 shows an example. In this example the coordinates in twine number of node 1 are 1.5 along the U twine and -3.5 along the V twine. It is clear that if the origin of coordinates in twine number changes, the twine coordinates of nodes will change but will not affect the equilibrium position of the net.

These twines are parallel inside the triangular element, which means that the sides of the triangle (12, 23, 31) are linear combinations of twine vectors (U and V, cf. Figure 3.6). This point is the main foundation of the model. These combinations are as follows:

$$12 = (U_2 - U_1)\mathbf{U} + (V_2 - V_1)\mathbf{V}$$

$$13 = (U_3 - U_1)\mathbf{U} + (V_3 - V_1)\mathbf{V}$$

12 (13): vector from vertex 1 (1) to vertex 2 (3).

The two previous equations with two unknowns $(\mathbf{U} \text{ and } \mathbf{V})$ then give the following:

$$\mathbf{U} = \frac{V_3 - V_1}{d} \mathbf{12} - \frac{V_2 - V_1}{d} \mathbf{13}$$
$$\mathbf{V} = \frac{U_2 - U_1}{d} \mathbf{13} - \frac{U_3 - U_1}{d} \mathbf{12}$$

With side vectors:

$$\mathbf{12} = \begin{vmatrix} x_2 - x_1 \\ y_2 - y_1 \\ z_2 - z_1 \end{vmatrix}$$

3.2. THE FINITE ELEMENT FOR NETTING

$$\mathbf{13} = \begin{vmatrix} x_3 - x_1 \\ y_3 - y_1 \\ z_3 - z_1 \end{vmatrix}$$

and

$$d = (U_2 - U_1)(V_3 - V_1) - (U_3 - U_1)(V_2 - V_1)$$

 x_i, y_i, z_i : Cartesian coordinates of vertex i,

 U_i, V_i : coordinates of vertex i in number of twines (twine coordinates).

The twine vectors (\mathbf{U}, \mathbf{V}) are calculated from the Cartesian coordinates (x_i, y_i, z_i) of the vertices of the triangular element.

It appears that nothing implies that the number of twine coordinates of the vertices of the triangle consists of integers. Therefore, these coordinates can be real. This implies that the vertices of the triangle are not necessarily located on knots of the net (Figure 3.4). Similarly, nothing prevents the triangle from being smaller than a mesh. It appears that while the triangle does not contain any piece of twine of the net, d is not null, and therefore the triangle contains twines and consequently a deformation energy. In other words, the triangular finite element is a homogenization of the mechanical properties of the net.

It also appears that every point of the twines belongs to only one triangular element and still the same, regardless of the deformation of the net. Points on the contour of a triangular element also belong to the neighbours.

3.2.2Metric of the triangular element

The objective of the finite element method is to calculate the Cartesian coordinates of the numerical nodes. These nodes are, for the netting, the vertices of the triangular elements (Figures 3.7 and 3.8 a).

The nodes are fixed relative to the netting, which means that the coordinates of the nodes in twines or meshes remain constant regardless of the netting deformation.

Figures 3.8 b and c show an example of coordinates of a triangular element. Generally speaking, the mesh coordinates are used by the netting maker.

There are relations between the mesh coordinates and the twine coordinates, the bases of which are noted in Figures 3.8 b and c.

The relations between the bases are the following:

$$\mathbf{u} = \mathbf{U} - \mathbf{V}$$

 $\mathbf{v} = \mathbf{U} + \mathbf{V}$

٦

This leads to:

$$\mathbf{U} = \frac{\mathbf{u} + \mathbf{v}}{2}$$
$$\mathbf{V} = \frac{\mathbf{v} - \mathbf{u}}{2}$$

This means that the relations between the twine coordinates and the mesh coordinates of the node P are the following:

$$U_P = u_P + v_P$$
$$V_P = v_P - u_P$$

and

Figure 3.7: Two deformations of the same structure. The twines coordinates of vertices remain constant. The twines coordinates of three vertices are noted. The dot is the origin of twines numbering. Only 1 twine on 5 is drawn.

Figure 3.8: Triangular element: Cartesian coordinates (a), twines coordinates (b), and mesh coordinates (c). The grey surface is a mesh surface (b).

$$u_P = \frac{U_P - V_P}{2}$$
$$v_P = \frac{U_P + V_P}{2}$$

Here, U_P and V_P are the twine coordinates, and u_P and v_P are the mesh coordinates of the same node P. In these conditions the vector from origin to node P could be written as follows:

$$\mathbf{OP} = U_P \mathbf{U} + V_P \mathbf{V}$$
$$\mathbf{OP} = u_P \mathbf{u} + v_P \mathbf{v}$$

3.2. THE FINITE ELEMENT FOR NETTING

Because the amplitude of a cross product of vectors is twice the surface of the triangle made of these two vectors, the Cartesian surface of the triangular element (in m^2) is half the amplitude of the cross product of the side vectors of the triangular element:

$$S=rac{1}{2}|\mathbf{12}\wedge\mathbf{13}|$$

The side vectors in Cartesian coordinates are as follows:

$$\mathbf{12} = \begin{vmatrix} x_2 - x_1 \\ y_2 - y_1 \\ z_2 - z_1 \end{vmatrix}$$
$$\mathbf{13} = \begin{vmatrix} x_3 - x_1 \\ y_3 - y_1 \\ z_3 - z_1 \end{vmatrix}$$

By the same way, the number of meshes, as defined in Figure 3.8b, is

$$nb_m = \frac{1}{4} |\vec{12} \wedge \vec{13}|$$

with side vectors in twine coordinates:

$$\vec{12} = \begin{vmatrix} U_2 - U_1 \\ V_2 - V_1 \\ 0 \end{vmatrix}$$
$$\vec{13} = \begin{vmatrix} U_3 - U_1 \\ V_3 - V_1 \\ 0 \end{vmatrix}$$

The number of meshes in a triangular element is

$$nb_m = \frac{1}{4} \left[(U_2 - U_1)(V_3 - V_1) - (U_3 - U_1)(V_2 - V_1) \right] = \frac{d}{4}$$

Because there are two twines U and two twines V per mesh, the number of twines U and V is calculated as follows:

$$nb_U = \frac{d}{2}$$
$$nb_V = \frac{d}{2}$$

Because there are also two knots per mesh, the number of knots in a triangular element is

$$nb_k = \frac{d}{2}$$

The surface of one mesh is calculated through the cross product of twines vectors $(\mathbf{U} \text{ and } \mathbf{V})$:

$$Ms = 2|\mathbf{U} \wedge \mathbf{V}|$$

which is also the surface of the triangular element divided by the number of meshes in the element:

$$Ms = \frac{S}{nb_m}$$

In the case of Figures 3.6 and 3.8, d = 38, the number of meshes is 9.5, the number of **U** twines is 18, the number of **V** twines is 18, and the number of knots is 18.

3.3 The forces on the netting

3.3.1 Twine tension in diamond mesh

The tensions in the twines are required to estimate the forces on the vertices due to these tensions. In the hypothesis of linear elasticity, these tensions are deduced from \mathbf{U} and \mathbf{V} , which have been previously calculated. In these conditions the twine tensions are as follows:

$$T_u = EA \frac{|\mathbf{U}| - l_0}{l_0}$$
$$T_v = EA \frac{|\mathbf{V}| - l_0}{l_0}$$

- E: Young's modulus of the material (N/m^2) ,
- A: mechanical section of the twines U and V (m^2) ,
- l_o : unstretched length of twine vectors (m).

The principle of virtual work is used here to calculate the forces on the vertices due to the tension in the twines.

The force component along X on vertex 1 of a triangular element is estimated by considering a virtual displacement (∂x 1) along the axis x of vertex 1. This displacement leads to an external work:

$$W_e = F_{x1}\partial x1$$

This displacement also induces a change in the length of mesh bars $(\partial |\mathbf{U}| \text{ and } \partial |\mathbf{V}|)$, an internal work per twine $\partial |\mathbf{U}|T_u$ and $\partial |\mathbf{V}|T_v$ and therefore an internal work for the triangular element:

$$W_i = (\partial |\mathbf{U}| T_u + \partial |\mathbf{V}| T_v) \frac{d}{2}$$

The principle of virtual work implies that the external work equals the internal work, since the forces represent the tension in the twines. That gives for each component of force on the three vertices:

$$\begin{split} F_{x1} &= \left(T_u \frac{\partial |\mathbf{U}|}{\partial x_1} + T_v \frac{\partial |\mathbf{V}|}{\partial x_1}\right) \frac{d}{2} \\ F_{y1} &= \left(T_u \frac{\partial |\mathbf{U}|}{\partial y_1} + T_v \frac{\partial |\mathbf{V}|}{\partial y_1}\right) \frac{d}{2} \\ F_{z1} &= \left(T_u \frac{\partial |\mathbf{U}|}{\partial z_1} + T_v \frac{\partial |\mathbf{V}|}{\partial z_1}\right) \frac{d}{2} \\ F_{x2} &= \left(T_u \frac{\partial |\mathbf{U}|}{\partial x_2} + T_v \frac{\partial |\mathbf{V}|}{\partial x_2}\right) \frac{d}{2} \\ F_{y2} &= \left(T_u \frac{\partial |\mathbf{U}|}{\partial y_2} + T_v \frac{\partial |\mathbf{V}|}{\partial y_2}\right) \frac{d}{2} \\ F_{z2} &= \left(T_u \frac{\partial |\mathbf{U}|}{\partial z_2} + T_v \frac{\partial |\mathbf{V}|}{\partial z_2}\right) \frac{d}{2} \\ F_{z3} &= \left(T_u \frac{\partial |\mathbf{U}|}{\partial x_3} + T_v \frac{\partial |\mathbf{V}|}{\partial x_3}\right) \frac{d}{2} \end{split}$$

$$\begin{split} F_{y3} &= (T_u \frac{\partial |\mathbf{U}|}{\partial y3} + T_v \frac{\partial |\mathbf{V}|}{\partial y3}) \frac{d}{2} \\ F_{z3} &= (T_u \frac{\partial |\mathbf{U}|}{\partial z3} + T_v \frac{\partial |\mathbf{V}|}{\partial z3}) \frac{d}{2} \end{split}$$

The derivatives $\frac{\partial |U|}{\partial x_1} \dots \frac{\partial |V|}{\partial z_3}$ can be calculated, as the equations relating to U, V and X_i, Y_i, Z_i have already been described. This gives the following vectors force for the three vertices:

$$\begin{aligned} \mathbf{F_1} &= (V_3 - V_2) T_u \frac{\mathbf{U}}{2|\mathbf{U}|} + (U_2 - U_3) T_v \frac{\mathbf{V}}{2|\mathbf{V}|} \\ \mathbf{F_2} &= (V_1 - V_3) T_u \frac{\mathbf{U}}{2|\mathbf{U}|} + (U_3 - U_1) T_v \frac{\mathbf{V}}{2|\mathbf{V}|} \\ \mathbf{F_3} &= (V_2 - V_1) T_u \frac{\mathbf{U}}{2|\mathbf{U}|} + (U_1 - U_2) T_v \frac{\mathbf{V}}{2|\mathbf{V}|} \end{aligned}$$

The Newton-Raphson method, described earlier, requires the calculation of the stiffness matrix, which is calculated from the derivatives of effort with respect to the positions of the vertices of the triangular element. The 81 derivatives, that is to say, by 9 by 9 component coordinates, are then the following:

The stiffness matrix:

The components are calculated as follows:

$$\begin{aligned} \frac{\partial F_{w1}}{\partial t} &= \frac{EA_u(V_3 - V_2)}{2} \left[\frac{\partial U_w}{\partial t} \left(\frac{1}{n_0} - \frac{1}{|\mathbf{U}|} \right) + \frac{\partial |\mathbf{U}|}{\partial t} \frac{U_w}{|\mathbf{U}|^2} \right] + \frac{EA_v(U_2 - U_3)}{2} \left[\frac{\partial V_w}{\partial t} \left(\frac{1}{n_0} - \frac{1}{|\mathbf{V}|} \right) + \frac{\partial |\mathbf{V}|}{\partial t} \frac{V_w}{|\mathbf{V}|^2} \right] \\ \frac{\partial F_{w2}}{\partial t} &= \frac{EA_u(V_1 - V_3)}{2} \left[\frac{\partial U_w}{\partial t} \left(\frac{1}{n_0} - \frac{1}{|\mathbf{U}|} \right) + \frac{\partial |\mathbf{U}|}{\partial t} \frac{U_w}{|\mathbf{U}|^2} \right] + \frac{EA_v(U_3 - U_1)}{2} \left[\frac{\partial V_w}{\partial t} \left(\frac{1}{n_0} - \frac{1}{|\mathbf{V}|} \right) + \frac{\partial |\mathbf{V}|}{\partial t} \frac{V_w}{|\mathbf{V}|^2} \right] \\ \frac{\partial F_{w3}}{\partial t} &= \frac{EA_u(V_2 - V_1)}{2} \left[\frac{\partial U_w}{\partial t} \left(\frac{1}{n_0} - \frac{1}{|\mathbf{U}|} \right) + \frac{\partial |\mathbf{U}|}{\partial t} \frac{U_w}{|\mathbf{U}|^2} \right] + \frac{EA_v(U_1 - U_2)}{2} \left[\frac{\partial V_w}{\partial t} \left(\frac{1}{n_0} - \frac{1}{|\mathbf{V}|} \right) + \frac{\partial |\mathbf{V}|}{\partial t} \frac{V_w}{|\mathbf{V}|^2} \right] \\ \end{aligned}$$
With:

w = x, y, z,t = x1, y1, z1, x2, y2, z2, x3, y3, z3.

The following derivatives are also required. The derivatives of the components of \mathbf{U} are as follows:

$$\frac{\partial U_x}{\partial x_1} = \frac{\partial U_y}{\partial y_1} = \frac{\partial U_z}{\partial z_1} = \frac{V_2 - V_3}{d}$$
$$\frac{\partial U_x}{\partial x_2} = \frac{\partial U_y}{\partial y_2} = \frac{\partial U_z}{\partial z_2} = \frac{V_3 - V_1}{d}$$

3.3. THE FORCES ON THE NETTING

$$\frac{\partial U_x}{\partial x^3} = \frac{\partial U_y}{\partial y^3} = \frac{\partial U_z}{\partial z^3} = \frac{V_1 - V_2}{d}$$
$$\frac{\partial U_x}{\partial yi} = \frac{\partial U_x}{\partial zi} = \frac{\partial U_y}{\partial zi} = \frac{\partial U_y}{\partial xi} = \frac{\partial U_z}{\partial xi} = \frac{\partial U_z}{\partial yi} = 0$$

The derivatives of the components of ${\bf V}$ are the following:

$$\frac{\partial V_x}{\partial x_1} = \frac{\partial V_y}{\partial y_1} = \frac{\partial V_z}{\partial z_1} = \frac{U_3 - U_2}{d}$$
$$\frac{\partial V_x}{\partial x_2} = \frac{\partial V_y}{\partial y_2} = \frac{\partial V_z}{\partial z_2} = \frac{U_1 - U_3}{d}$$
$$\frac{\partial V_x}{\partial x_3} = \frac{\partial V_y}{\partial y_3} = \frac{\partial V_z}{\partial z_3} = \frac{U_2 - U_1}{d}$$
$$\frac{\partial V_x}{\partial y_i} = \frac{\partial V_x}{\partial z_i} = \frac{\partial V_y}{\partial z_i} = \frac{\partial V_y}{\partial x_i} = \frac{\partial V_z}{\partial x_i} = \frac{\partial V_z}{\partial y_i} = 0$$

The derivatives of $|\mathbf{U}|$ follow:

$$\begin{split} \frac{\partial |\mathbf{U}|}{\partial x_1} &= \frac{V_2 - V_3}{d^2} \left[(x_2 - x_1)(V_3 - V_1) - (x_3 - x_1)(V_2 - V_1) \right] \\ \frac{\partial |\mathbf{U}|}{\partial x^2} &= \frac{V_3 - V_1}{d^2} \left[(x_2 - x_1)(V_3 - V_1) - (x_3 - x_1)(V_2 - V_1) \right] \\ \frac{\partial |\mathbf{U}|}{\partial x^3} &= \frac{V_1 - V_2}{d^2} \left[(x_2 - x_1)(V_3 - V_1) - (x_3 - x_1)(V_2 - V_1) \right] \\ \frac{\partial |\mathbf{U}|}{\partial y_1} &= \frac{V_2 - V_3}{d^2} \left[(y_2 - y_1)(V_3 - V_1) - (y_3 - y_1)(V_2 - V_1) \right] \\ \frac{\partial |\mathbf{U}|}{\partial y_2} &= \frac{V_3 - V_1}{d^2} \left[(y_2 - y_1)(V_3 - V_1) - (y_3 - y_1)(V_2 - V_1) \right] \\ \frac{\partial |\mathbf{U}|}{\partial y_3} &= \frac{V_1 - V_2}{d^2} \left[(y_2 - y_1)(V_3 - V_1) - (x_3 - z_1)(V_2 - V_1) \right] \\ \frac{\partial |\mathbf{U}|}{\partial z_1} &= \frac{V_2 - V_3}{d^2} \left[(z_2 - z_1)(V_3 - V_1) - (z_3 - z_1)(V_2 - V_1) \right] \\ \frac{\partial |\mathbf{U}|}{\partial z_2} &= \frac{V_3 - V_1}{d^2} \left[(z_2 - z_1)(V_3 - V_1) - (z_3 - z_1)(V_2 - V_1) \right] \\ \frac{\partial |\mathbf{U}|}{\partial z_3} &= \frac{V_1 - V_2}{d^2} \left[(z_2 - z_1)(V_3 - V_1) - (z_3 - z_1)(V_2 - V_1) \right] \\ \frac{\partial |\mathbf{U}|}{\partial z_3} &= \frac{V_1 - V_2}{d^2} \left[(z_2 - z_1)(V_3 - V_1) - (z_3 - z_1)(V_2 - V_1) \right] \\ \frac{\partial |\mathbf{U}|}{\partial z_3} &= \frac{V_1 - V_2}{d^2} \left[(z_2 - z_1)(V_3 - V_1) - (z_3 - z_1)(V_2 - V_1) \right] \\ \frac{\partial |\mathbf{U}|}{\partial z_3} &= \frac{V_1 - V_2}{d^2} \left[(z_2 - z_1)(V_3 - V_1) - (z_3 - z_1)(V_2 - V_1) \right] \\ \frac{\partial |\mathbf{U}|}{\partial z_3} &= \frac{V_1 - V_2}{d^2} \left[(z_2 - z_1)(V_3 - V_1) - (z_3 - z_1)(V_2 - V_1) \right] \\ \frac{\partial |\mathbf{U}|}{\partial z_3} &= \frac{V_1 - V_2}{d^2} \left[(z_2 - z_1)(V_3 - V_1) - (z_3 - z_1)(V_2 - V_1) \right] \\ \frac{\partial |\mathbf{U}|}{\partial z_3} &= \frac{V_1 - V_2}{d^2} \left[(z_2 - z_1)(V_3 - V_1) - (z_3 - z_1)(V_2 - V_1) \right] \\ \frac{\partial |\mathbf{U}|}{\partial z_3} &= \frac{V_1 - V_2}{d^2} \left[(z_2 - z_1)(V_3 - V_1) - (z_3 - z_1)(V_2 - V_1) \right] \\ \frac{\partial |\mathbf{U}|}{\partial z_3} &= \frac{V_1 - V_2}{d^2} \left[(z_2 - z_1)(V_3 - V_1) - (z_3 - z_1)(V_2 - V_1) \right] \\ \frac{\partial |\mathbf{U}|}{\partial z_3} &= \frac{V_1 - V_2}{d^2} \left[(z_2 - z_1)(V_3 - V_1) - (z_3 - z_1)(V_2 - V_1) \right] \\ \frac{\partial |\mathbf{U}|}{\partial z_3} &= \frac{V_1 - V_2}{d^2} \left[(z_2 - z_1)(V_3 - V_1) - (z_3 - z_1)(V_2 - V_1) \right] \\ \frac{\partial |\mathbf{U}|}{\partial z_3} &= \frac{V_1 - V_2}{d^2} \left[(z_3 - z_1)(V_3 - V_1) - (z_3 - z_1)(V_2 - V_1) \right] \\ \frac{\partial |\mathbf{U}|}{\partial z_3} &= \frac{V_1 - V_2}{d^2} \left[(z_3 - z_1)(V_3 - V_1) - (z_3 - z_1)(V_2 - V_1) \right] \\ \frac{\partial |\mathbf{U}|}{\partial z_3} &= \frac{V_$$

The derivatives of $|\mathbf{V}|$ are shown below:

$$\frac{\partial |\mathbf{V}|}{\partial x_1} = \frac{U_2 - U_3}{d^2} \left[(x_2 - x_1)(U_3 - U_1) - (x_3 - x_1)(U_2 - U_1) \right]$$

$$\frac{\partial |\mathbf{V}|}{\partial x_2} = \frac{U_3 - U_1}{d^2} \left[(x_2 - x_1)(U_3 - U_1) - (x_3 - x_1)(U_2 - U_1) \right]$$

$$\frac{\partial |\mathbf{V}|}{\partial x_3} = \frac{U_1 - U_2}{d^2} \left[(x_2 - x_1)(U_3 - U_1) - (x_3 - x_1)(U_2 - U_1) \right]$$

$$\begin{split} \frac{\partial |\mathbf{V}|}{\partial y_1} &= \frac{U_2 - U_3}{d^2} \left[(y_2 - y_1)(U_3 - U_1) - (y_3 - y_1)(U_2 - U_1) \right] \\ \frac{\partial |\mathbf{V}|}{\partial y_2} &= \frac{U_3 - U_1}{d^2} \left[(y_2 - y_1)(U_3 - U_1) - (y_3 - y_1)(U_2 - U_1) \right] \\ \frac{\partial |\mathbf{V}|}{\partial y_3} &= \frac{U_1 - U_2}{d^2} \left[(y_2 - y_1)(U_3 - U_1) - (y_3 - y_1)(U_2 - U_1) \right] \\ \frac{\partial |\mathbf{V}|}{\partial z_1} &= \frac{U_2 - U_3}{d^2} \left[(z_2 - z_1)(U_3 - U_1) - (z_3 - z_1)(U_2 - U_1) \right] \\ \frac{\partial |\mathbf{V}|}{\partial z_2} &= \frac{U_3 - U_1}{d^2} \left[(z_2 - z_1)(U_3 - U_1) - (z_3 - z_1)(U_2 - U_1) \right] \\ \frac{\partial |\mathbf{V}|}{\partial z_3} &= \frac{U_1 - U_2}{d^2} \left[(z_2 - z_1)(U_3 - U_1) - (z_3 - z_1)(U_2 - U_1) \right] \end{split}$$

3.3.2 Twine tension in hexagonal mesh

The same technique for the diamond mesh netting is used for hexagonal ones. The triangular element dedicated to the hexagonal mesh netting has the same assumption as previously adopted: the three families of twines inside the element are parallel, i.e., \mathbf{l} , \mathbf{m} , and \mathbf{n} twine vectors, are parallel (Figure 3.9).

Figure 3.9: Triangular element dedicated to the hexagonal mesh nets. The twine vectors are \mathbf{l} , \mathbf{m} , and \mathbf{n} . The number of meshes are noted for each vertex. The mesh base is in grey and is defined by vectors \mathbf{U} and \mathbf{V} .

The mesh base (shaded area in Figure 3.9) is first defined. This base mesh is defined as a parallelogram; its corners coincide with knots, and it includes two **l** twine vectors, two **m** twine vectors, and two **n** twine vectors. This base mesh is also used to quantify the number of meshes inside the triangular element. The vertices of the triangular element then have coordinates in base meshes $(U_1, U_2, U_3, V_1, V_2, V_3;$ Figure 3.9).

Vectors \mathbf{U} and \mathbf{V} are the sides of the mesh base. There are linear relations between these two vectors and the sides of the triangular element (arrows on Figure 3.9):

$$12 = (U_2 - U_1)\mathbf{U} + (V_2 - V_1)\mathbf{V}$$

$$13 = (U_3 - U_1)\mathbf{U} + (V_3 - V_1)\mathbf{V}$$

The two previous equations give the following as in the case of diamond mesh (see section 3.2.1, page 32), namely:

$$\mathbf{U} = \frac{V_3 - V_1}{d} \mathbf{12} - \frac{V_2 - V_1}{d} \mathbf{13}$$
$$\mathbf{V} = \frac{U_3 - U_1}{d} \mathbf{12} - \frac{U_2 - U_1}{d} \mathbf{13}$$

With vectors of the sides of the mesh base:

$$\mathbf{12} = \begin{vmatrix} x_2 - x_1 \\ y_2 - y_1 \\ z_2 - z_1 \end{vmatrix}$$

$$\mathbf{13} = \begin{vmatrix} x_3 - x_1 \\ y_3 - y_1 \\ z_3 - z_1 \end{vmatrix}$$

 and

$$d = (U_2 - U_1)(V_3 - V_1) - (U_3 - U_1)(V_2 - V_1)$$

 x_i, y_i, z_i : Cartesian coordinates of vertex i.

The number of base meshes in a triangular element is equal to d/2, the total number twine vectors is 3d, the number of twine vectors \mathbf{l} , \mathbf{m} , or \mathbf{n} is d, and the number of nodes is 2d.

Tensions in twine vectors \mathbf{l} , \mathbf{m} , and \mathbf{n} are now calculated. This is done by solving the force balance of the twines. This is solved by writing the following equations:

1) The base mesh definition leads to (Figure 3.9) :

$$\mathbf{U} = -\mathbf{m} + 2\mathbf{n} - \mathbf{l}$$
$$\mathbf{V} = -\mathbf{m} + \mathbf{l}$$

2) The amplitude of tension in the twines gives:

$$|\mathbf{T}_{\mathbf{l}}| = EA_l \frac{|\mathbf{l}| - l_0}{l_0}$$
$$|\mathbf{T}_{\mathbf{m}}| = EA_m \frac{|\mathbf{m}| - m_0}{m_0}$$
$$|\mathbf{T}_{\mathbf{n}}| = EA_n \frac{|\mathbf{n}| - n_0}{n_0}$$

3) The balance of tensions leads to:

$$\mathbf{T_l} + \mathbf{T_m} + \mathbf{T_n} = \mathbf{0}$$

This gives six equations with six unknowns (l, m, n, T_l, T_m, T_n) .

Equilibrium of the joint knot

The six previous equations can be reduced to the two that follow with two unknowns (m_x and m_y components of \boldsymbol{m}), since the triangular element has been turned in the plane XOY (Priour 2002, Priour 2006):

$$\begin{aligned} & \frac{m_x + V_x}{\sqrt{(m_x + V_x)^2 + (m_y + V_y)^2}} \frac{E_l A_l}{l_o} \left[\sqrt{(m_x + V_x)^2 + (m_y + V_y)^2} - l_o \right] \\ &+ \frac{m_x}{\sqrt{m_x^2 + m_y^2}} \frac{E_m A_m}{m_o} \left[\sqrt{m_x^2 + m_y^2} - m_o \right] \\ &+ \frac{m_x + \frac{U_x + V_x}{2}}{\sqrt{(m_x + \frac{U_x + V_x}{2})^2 + (m_y + \frac{U_y + V_y}{2})^2}} \frac{E_n A_n}{n_o} \left[\sqrt{(m_x + \frac{U_x + V_x}{2})^2 + (m_y + \frac{U_y + V_y}{2})^2} - n_o \right] \\ &= 0 \end{aligned}$$

$$\begin{aligned} & \frac{m_y + V_y}{\sqrt{(m_x + V_x)^2 + (m_y + V_y)^2}} \frac{E_l A_l}{l_o} \left[\sqrt{(m_y + V_y)^2 + (m_y + V_y)^2} - l_o \right] \\ &+ \frac{m_y}{\sqrt{m_x^2 + m_y^2}} \frac{E_m A_m}{m_o} \left[\sqrt{m_y^2 + m_y^2} - m_o \right] \\ &+ \frac{m_y + \frac{U_y + V_y}{2}}{\sqrt{(m_x + \frac{U_x + V_x}{2})^2 + (m_y + \frac{U_y + V_y}{2})^2}} \frac{E_n A_n}{n_o} \left[\sqrt{(m_y + \frac{U_y + V_y}{2})^2 + (m_y + \frac{U_y + V_y}{2})^2} - n_o \right] \\ &= 0 \end{aligned}$$

mx, my: components of m twine (m),

 l_o, m_o, n_o : unstretched length of twines l, m, and n (m),

 U_x, U_y, V_x, V_y : components of the sides of the mesh base (m; see Figure 3.9),

 E_l, E_m, E_n : Young modulus of twines l, m, and n (Pa),

 A_l, A_m, A_n : section of twines l, m, and n (m^2) .

These two equations describe the equilibrium of the joint knot of three twines in a triangle, the sides of which are $\frac{U+V}{2}$ and V (Figure 3.10). These equations are in newtons.

Figure 3.10: The three twines are in the triangle defined by $\frac{U+V}{2}$ and V (cf. Figure 3.9).

Approximation of the equilibrium of the joint

The analytical solution of the two previous equations has not been found. Therefore, the following approximation has been made to simplify the equations. This approximation is acceptable because the stretched lengths of the twines are close to the unstretched length.

$$\frac{m_x}{|\boldsymbol{m}|} \approx \frac{m_x}{m_o}$$
$$\frac{m_y}{|\boldsymbol{m}|} \approx \frac{m_y}{m_o}$$

With this approximation the two previous equilibrium equations are reduced to the following:

$$(m_x + V_x) \frac{E_l A_l}{l_o^2} (\sqrt{(m_x + V_x)^2 + (m_y + V_y)^2} - l_o) + m_x \frac{E_m A_m}{m_o^2} (\sqrt{m_x^2 + m_y^2} - m_o) + (m_x + \frac{U_x + V_x}{2}) \frac{E_n A_n}{n_o^2} (\sqrt{(m_x + \frac{U_x + V_x}{2})^2 + (m_y + \frac{U_y + V_y}{2})^2} - n_o) = 0$$

$$(m_y + V_y) \frac{E_l A_l}{l_o^2} (\sqrt{(m_x + V_x)^2 + (m_y + V_y)^2} - l_o) + m_y \frac{E_m A_m}{m_o^2} (\sqrt{m_x^2 + m_y^2} - m_o) + (m_y + \frac{U_y + V_y}{2}) \frac{E_n A_n}{n_o^2} (\sqrt{(m_x + \frac{U_x + V_x}{2})^2 + (m_y + \frac{U_y + V_y}{2})^2} - n_o) = 0$$

They are the complete form of the following:

$$l_x \frac{E_l A_l}{l_o^2} (|\boldsymbol{l}| - l_o) + m_x \frac{E_m A_m}{m_o^2} (|\boldsymbol{m}| - m_o) + n_x \frac{E_n A_n}{n_o^2} (|\boldsymbol{n}| - n_o) = 0$$
$$l_y \frac{E_l A_l}{l_o^2} (|\boldsymbol{l}| - l_o) + m_y \frac{E_m A_m}{m_o^2} (|\boldsymbol{m}| - m_o) + n_y \frac{E_n A_n}{n_o^2} (|\boldsymbol{n}| - n_o) = 0$$

Newton-Raphson method

The previous approximation has not been sufficient to reach the analytical solution. The Newton-Raphson method is used to find a numerical solution (Deuflhard 2004).

For each iteration the displacement h is searched to find the equilibrium:

$$h_k = \frac{F(x_k)}{-F'(x_k)}$$
$$x_{k+1} = x_k + h_k$$

k: iteration number,

F: force on nodes, x: position of nodes. Here:

$$\boldsymbol{F} = \begin{cases} l_x \frac{E_l A_l}{l_c^2} (|\boldsymbol{l}| - l_o) + m_x \frac{E_m A_m}{m_c^2} (|\boldsymbol{m}| - m_o) + n_x \frac{E_n A_n}{n_c^2} (|\boldsymbol{n}| - n_o) = F_1 \\ l_y \frac{E_l A_l}{l_o^2} (|\boldsymbol{l}| - l_o) + m_y \frac{E_m A_m}{m_o^2} (|\boldsymbol{m}| - m_o) + n_y \frac{E_n A_n}{n_o^2} (|\boldsymbol{n}| - n_o) = F_2 \\ \boldsymbol{x} = \begin{cases} m_x \\ m_y \end{cases} \end{cases}$$

3.3. THE FORCES ON THE NETTING

The derivative is:

$$F' = \left| \begin{array}{cc} D_{11} & D_{12} \\ D_{21} & D_{22} \end{array} \right|.$$

With:

$$D_{11} = -\left[\frac{EA_l}{l_o^2}(\boldsymbol{l} - l_o + \frac{l_x^2}{\boldsymbol{l}}) + \frac{EA_m}{m_o^2}(\boldsymbol{m} - m_o + \frac{m_x^2}{\boldsymbol{m}}) + \frac{EA_n}{n_o^2}(\boldsymbol{n} - n_o + \frac{n_x^2}{\boldsymbol{n}})\right]$$
$$D_{12} = D_{21} = -\left[\frac{EA_l}{l_o^2}\frac{l_x l_y}{\boldsymbol{l}} + \frac{EA_m}{m_o^2}\frac{m_x m_y}{\boldsymbol{m}} + \frac{EA_n}{n_o^2}\frac{n_x n_y}{\boldsymbol{n}}\right]$$
$$D_{22} = -\left[\frac{EA_l}{l_o^2}(\boldsymbol{l} - l_o + \frac{l_y^2}{\boldsymbol{l}}) + \frac{EA_m}{m_o^2}(\boldsymbol{m} - m_o + \frac{m_y^2}{\boldsymbol{m}}) + \frac{EA_n}{n_o^2}(\boldsymbol{n} - n_o + \frac{n_y^2}{\boldsymbol{n}})\right]$$

With the previous conditions the displacement (h) can be calculated:

$$\boldsymbol{h} = \begin{cases} \frac{D_{22}F_1 - D_{12}F_2}{D_{22}D_{11} - D_{12}D_{21}}\\ \frac{D_{22}F_2 - D_{21}F_1}{D_{22}D_{11} - D_{12}D_{21}} \end{cases}$$

Forces on nodes

The forces on the sides of the triangular element are calculated from the twine tension. These forces are related to the number of twines through the sides of the triangle. This number of twines through each side can be calculated based on the number of base mesh of each vertex.

The effort on the side along ${\bf U}$ of the base mesh (Figure 3.9) is

$$\mathbf{F}_{\mathbf{U}} = \mathbf{T}_{\mathbf{l}} - \mathbf{T}_{\mathbf{m}}$$

The effort along \mathbf{V} is

$$\mathbf{F}_{\mathbf{V}} = -\mathbf{T}_{\mathbf{n}}$$

Under these conditions, the effort on each side of the triangle can be deduced:

$$\begin{aligned} \mathbf{T_{12}} &= (U_2 - U_1)(\mathbf{T_l} - \mathbf{T_m}) + (V_2 - V_1)(-\mathbf{T_n}) \\ \mathbf{T_{23}} &= (U_3 - U_2)(\mathbf{T_l} - \mathbf{T_m}) + (V_3 - V_2)(-\mathbf{T_n}) \\ \mathbf{T_{31}} &= (U_1 - U_3)(\mathbf{T_l} - \mathbf{T_m}) + (V_1 - V_3)(-\mathbf{T_n}) \end{aligned}$$

Here, \mathbf{T}_{ij} is the effort on the side ij of the triangular element.

Each side effort is distributed on each end of this side as the twines are evenly distributed along the sides of the triangle:

$$F_{1} = \frac{T_{12} + T_{31}}{2}$$
$$F_{2} = \frac{T_{23} + T_{12}}{2}$$
$$F_{3} = \frac{T_{31} + T_{23}}{2}$$

 ${\bf F_1},~{\bf F_2},~{\rm and}~{\bf F_3}$ are the forces on the three vertices of the triangular element due to the tension in the twines.

The contribution of the stiffness matrix is not described here.

3.3.3 Hydrodynamic drag

Introduction

The drag force on the netting is calculated in this model as the sum of the drag force on each twine (**U** and **V**). This assumption is probably questionable, because the drag on a twine alone is surely not exactly the same as the drag on this twine among other twines as it is the case in a netting. Anyway, this assumption leads to the calculation of the drag of each triangular element because for each the twines vectors are known, as described earlier. The formulation for the twine vector drag is based on the assumptions of Morrison adapted by Landweber and Richtmeyer (Landweber and Protter 1947, Richtmeyer 1941).

The drag amplitudes on the U twines used in the model (Figure 3.11) are:

$$|\mathbf{F}| = \frac{1}{2}\rho C_d D l_0 \left[|\mathbf{c}| \sin(\alpha) \right]^2 \frac{d}{2}$$
$$|\mathbf{T}| = f \frac{1}{2}\rho C_d D l_0 \left[|\mathbf{c}| \cos(\alpha) \right]^2 \frac{d}{2}$$

The directions of the drag on the **U** twine vectors are:

$$\begin{split} \frac{\mathbf{F}}{|\mathbf{F}|} &= \frac{\mathbf{U} \wedge (\mathbf{c} \wedge \mathbf{U})}{|\mathbf{U} \wedge (\mathbf{c} \wedge \mathbf{U})|} \\ \frac{\mathbf{T}}{|\mathbf{T}|} &= \frac{\mathbf{F} \wedge (\mathbf{c} \wedge \mathbf{F})}{|\mathbf{F} \wedge (\mathbf{c} \wedge \mathbf{F})|} \end{split}$$

F: normal drag (N) on the U twines, following the assumptions of Landweber,

T: tangential drag (N) on the U twines, Richtmeyer hypothesis,

 ρ : density of water (kg/m^3) ,

 C_d : normal drag coefficient,

f: tangential drag coefficient,

D: diameter of twine (m),

 l_0 : length of twine vector (m),

c: water velocity relative to the twine (m/s),

 α : angle between the U twine and the water velocity (radians),

d/2: number of U twine vectors in the triangular element.

In the equations of drag amplitude, the expressions $|\mathbf{c}|sin(\alpha)$ and $|\mathbf{c}|cos(\alpha)$ are the normal and tangential projections on \mathbf{c} along the U twine vector.

The drag on V twines for a triangular element are similar: **U** is replaced by **V** and α by β .

The length of twine vectors used in the formulation of drag amplitude can be assessed by $|\mathbf{U}|$ for the U twines and by $|\mathbf{V}|$ for the V twines. That would mean it takes into account the twine elongation. Generally speaking, a twine elongation is associated with a diameter D reduction by the Poisson coefficient. Because this Poisson coefficient is not taken into account in the present modelling, the twine surface is approximated by Dl_0 , where D is the diameter of the twines and l_0 is the unstretched length of the twine vectors.

All parameters, including the angles α and β , are constant and known for each triangular element. Therefore, the drag can be calculated for each triangular element. The drag force for a triangular element is spread over the three vertices of the element at 1/3 per vertex.

Figure 3.11: Normal (\mathbf{F}) and tangential (\mathbf{T}) forces on a twine due to the relative velocity of water (\mathbf{c}) .

Figure 3.12: Example of triangular element. The drag forces are calculated for U twines and for V twines. The twine coordinates are noted in this example.

Definitions of the variables

The Cartesian coordinates of the three nodes (1, 2, 3) of the triangular element (cf. Figure 3.12) follow:

$$\mathbf{1} = \begin{vmatrix} x_1 \\ y_1 \\ z_1 \end{vmatrix}$$
$$\mathbf{2} = \begin{vmatrix} x_2 \\ y_2 \\ z_2 \end{vmatrix}$$
$$\mathbf{3} = \begin{vmatrix} x_3 \\ y_3 \\ z_3 \end{vmatrix}$$

The twine coordinates of the three nodes (1, 2, 3) of the triangular element are as follows:

$$\mathbf{1} = \begin{vmatrix} U_1 \\ V_1 \end{vmatrix}$$
$$\mathbf{2} = \begin{vmatrix} U_2 \\ V_2 \end{vmatrix}$$
$$\mathbf{3} = \begin{vmatrix} U_3 \\ V_3 \end{vmatrix}$$

The vector current is

$$\mathbf{c} = \begin{vmatrix} c_x \\ c_y \\ c_z \end{vmatrix}$$

Generally speaking, c_z is null.

It has been seen previously:

$$\mathbf{U} = \frac{V_3 - V_1}{d} \mathbf{12} - \frac{V_2 - V_1}{d} \mathbf{13}$$
$$\mathbf{V} = \frac{U_2 - U_1}{d} \mathbf{13} - \frac{U_3 - U_1}{d} \mathbf{12}$$

with sides vectors:

$$\mathbf{12} = \begin{vmatrix} x_2 - x_1 \\ y_2 - y_1 \\ z_2 - z_1 \end{vmatrix}$$
$$\mathbf{13} = \begin{vmatrix} x_3 - x_1 \\ y_3 - y_1 \\ z_3 - z_1 \end{vmatrix}$$

 and

$$d = (U_2 - U_1)(V_3 - V_1) - (U_3 - U_1)(V_2 - V_1)$$

The components of U twine vectors are as follows:

$$\mathbf{U} = \begin{vmatrix} U_x \\ U_y \\ U_z \end{vmatrix}$$
$$\mathbf{U} = \begin{vmatrix} \frac{1}{d} \left[(V_3 - V_1)(x_2 - x_1) - (V_2 - V_1)(x_3 - x_1) \right] \\ \frac{1}{d} \left[(V_3 - V_1)(y_2 - y_1) - (V_2 - V_1)(y_3 - y_1) \right] \\ \frac{1}{d} \left[(V_3 - V_1)(z_2 - z_1) - (V_2 - V_1)(z_3 - z_1) \right] \end{vmatrix}$$

The angle between current and U is

$$cos(\alpha) = \frac{\mathbf{c}.\mathbf{U}}{|\mathbf{c}||\mathbf{U}|}$$

The components of V twine vectors are as follows:

$$\mathbf{V} = \begin{vmatrix} V_x \\ V_y \\ V_z \end{vmatrix}$$
$$\mathbf{V} = \begin{vmatrix} \frac{1}{d} \left[(U_2 - U_1)(x_3 - x_1) - (U_3 - U_1)(x_2 - x_1) \right] \\ \frac{1}{d} \left[(U_2 - U_1)(y_3 - y_1) - (U_3 - U_1)(y_2 - y_1) \right] \\ \frac{1}{d} \left[(U_2 - U_1)(z_3 - z_1) - (U_3 - U_1)(z_2 - z_1) \right] \end{vmatrix}$$

The angle between current and V is

$$cos(\beta) = \frac{\mathbf{c.V}}{|\mathbf{c}||\mathbf{V}|}$$

Evaluations for the stiffness of the normal force on the U twines The normal force on U twines is

$$\mathbf{F} = |\mathbf{F}| rac{\mathbf{U} \wedge (\mathbf{c} \wedge \mathbf{U})}{|\mathbf{U} \wedge (\mathbf{c} \wedge \mathbf{U})|}$$

That means that the $x \ y$ and z components are as follows:

$$\mathbf{F}_{x} = |\mathbf{F}| \frac{\mathbf{E}_{x}}{|\mathbf{E}|}$$
$$\mathbf{F}_{y} = |\mathbf{F}| \frac{\mathbf{E}_{y}}{|\mathbf{E}|}$$
$$\mathbf{F}_{z} = |\mathbf{F}| \frac{\mathbf{E}_{z}}{|\mathbf{E}|}$$

With:

$$\mathbf{E} = \mathbf{U} \wedge (\mathbf{c} \wedge \mathbf{U})$$

 and

$$\mathbf{E} = \begin{vmatrix} E_x \\ E_y \\ E_z \end{vmatrix}$$

The x component of the derivative is

$$\mathbf{F}'_x = |\mathbf{F}|' \frac{\mathbf{E}_x}{|\mathbf{E}|} + |\mathbf{F}| \frac{\mathbf{E}'_x |\mathbf{E}| - \mathbf{E}_x |\mathbf{E}|'}{|\mathbf{E}|^2}$$

Which gives for the x y and z components:

$$\begin{split} \mathbf{F}'_{x} &= |\mathbf{F}|' \frac{\mathbf{E}_{x}}{|\mathbf{E}|} + \frac{|\mathbf{F}|}{|\mathbf{E}|^{2}} \left\{ \mathbf{E}'_{x} |\mathbf{E}| - \frac{\mathbf{E}_{x}}{|\mathbf{E}|} (\mathbf{E}_{x} \mathbf{E}'_{x} + \mathbf{E}_{y} \mathbf{E}'_{y} + \mathbf{E}_{z} \mathbf{E}'_{z}) \right\} \\ \mathbf{F}'_{y} &= |\mathbf{F}|' \frac{\mathbf{E}_{y}}{|\mathbf{E}|} + \frac{|\mathbf{F}|}{|\mathbf{E}|^{2}} \left\{ \mathbf{E}'_{y} |\mathbf{E}| - \frac{\mathbf{E}_{y}}{|\mathbf{E}|} (\mathbf{E}_{x} \mathbf{E}'_{x} + \mathbf{E}_{y} \mathbf{E}'_{y} + \mathbf{E}_{z} \mathbf{E}'_{z}) \right\} \end{split}$$

50

3.3. THE FORCES ON THE NETTING

$$\mathbf{F}_z' = |\mathbf{F}|' \frac{\mathbf{E}_z}{|\mathbf{E}|} + \frac{|\mathbf{F}|}{|\mathbf{E}|^2} \left\{ \mathbf{E}_z' |\mathbf{E}| - \frac{\mathbf{E}_z}{|\mathbf{E}|} (\mathbf{E}_x \mathbf{E}_x' + \mathbf{E}_y \mathbf{E}_y' + \mathbf{E}_z \mathbf{E}_z') \right\}$$

For this assessment the derivative of ${\bf E}$ is required:

$$\mathbf{E}' = \mathbf{U}' \wedge (\mathbf{c} \wedge \mathbf{U}) + \mathbf{U} \wedge (\mathbf{c} \wedge \mathbf{U}')$$

This leads to:

$$\mathbf{E}' = 2(\mathbf{U}'.\mathbf{U})\mathbf{c} - (\mathbf{U}'.\mathbf{c})\mathbf{U} - (\mathbf{U}.\mathbf{c})\mathbf{U}'$$

Which is:

$$\begin{aligned} \mathbf{E}'_{x} &= 2(\mathbf{U}'.\mathbf{U})\mathbf{c}_{x} - (\mathbf{U}'.\mathbf{c})\mathbf{U}_{x} - (\mathbf{U}.\mathbf{c})\mathbf{U}'_{x} \\ \mathbf{E}'_{y} &= 2(\mathbf{U}'.\mathbf{U})\mathbf{c}_{y} - (\mathbf{U}'.\mathbf{c})\mathbf{U}_{y} - (\mathbf{U}.\mathbf{c})\mathbf{U}'_{y} \\ \mathbf{E}'_{z} &= 2(\mathbf{U}'.\mathbf{U})\mathbf{c}_{z} - (\mathbf{U}'.\mathbf{c})\mathbf{U}_{z} - (\mathbf{U}.\mathbf{c})\mathbf{U}'_{z} \end{aligned}$$

With:

$$\mathbf{U}'.\mathbf{U} = \mathbf{U}_x\mathbf{U}'_x + \mathbf{U}_y\mathbf{U}'_y + \mathbf{U}_z\mathbf{U}'_z$$
$$\mathbf{U}'.\mathbf{c} = \mathbf{c}_x\mathbf{U}'_x + \mathbf{c}_y\mathbf{U}'_y + \mathbf{c}_z\mathbf{U}'_z$$
$$\mathbf{U}.\mathbf{c} = \mathbf{U}_x\mathbf{c}_x + \mathbf{U}_y\mathbf{c}_y + \mathbf{U}_z\mathbf{c}_z$$

The derivative of the amplitude of the normal force is

$$|\mathbf{F}|' = \frac{1}{2}\rho C_d D l_0 |\mathbf{c}|^2 \left([sin(\alpha)]^2 \right)' \frac{d}{2}$$

which is

$$|\mathbf{F}|' = \frac{d}{2}\rho C_d D l_0 |\mathbf{c}|^2 \cos(\alpha) \sin(\alpha) \alpha'$$

The derivative of α is

$$\alpha' = \frac{-1}{\sqrt{1 - \left(\frac{\mathbf{c}.\mathbf{U}}{|\mathbf{c}||\mathbf{U}|}\right)^2}} \left[\frac{\mathbf{c}.\mathbf{U}}{|\mathbf{c}||\mathbf{U}|}\right]'$$

That gives

$$\alpha' = \frac{-1}{\sqrt{1 - (\frac{\mathbf{c}.\mathbf{U}}{|\mathbf{c}||\mathbf{U}|})^2}} \left[\frac{\mathbf{c}}{|\mathbf{c}|} \cdot \left(\frac{\mathbf{U}}{|\mathbf{U}|} \right)' \right]$$

The derivative of the U twine direction is

$$\left(\frac{\mathbf{U}}{|\mathbf{U}|}\right)' = \frac{\mathbf{U}'|\mathbf{U}| - \mathbf{U}|\mathbf{U}|'}{|\mathbf{U}|^2}$$

That means that the derivative of α is

$$\alpha' = \frac{-1}{\sqrt{1 - \left(\frac{\mathbf{c} \cdot \mathbf{U}}{|\mathbf{c}||\mathbf{U}|}\right)^2}} \left(\frac{\mathbf{c}}{|\mathbf{c}|}\right) \cdot \left(\frac{\mathbf{U}'|\mathbf{U}| - \mathbf{U}|\mathbf{U}|'}{|\mathbf{U}|^2}\right)$$

or

$$\alpha' = \frac{-1}{|\mathbf{U}|^2 |\mathbf{c}| \sin \alpha} \left\{ |\mathbf{U}| \left[c_x \mathbf{U}'_x + c_y \mathbf{U}'_y + c_z \mathbf{U}'_z \right] - (\mathbf{c}.\mathbf{U}) |\mathbf{U}|' \right\}$$

In this case \mathbf{U}'_x is the component along x of \mathbf{U}' . The derivative of vector \mathbf{U} is

$$\mathbf{U}' = egin{bmatrix} \mathbf{U}'_x \ \mathbf{U}'_y \ \mathbf{U}'_z \end{bmatrix}$$

Which is

$$\frac{\partial U_x}{\partial x_1} = \frac{\partial U_y}{\partial y_1} = \frac{\partial U_z}{\partial z_1} = \frac{1}{d} (V_2 - V_3)$$
$$\frac{\partial U_x}{\partial x_2} = \frac{\partial U_y}{\partial y_2} = \frac{\partial U_z}{\partial z_2} = \frac{1}{d} (V_3 - V_1)$$
$$\frac{\partial U_x}{\partial x_3} = \frac{\partial U_y}{\partial y_3} = \frac{\partial U_z}{\partial z_3} = \frac{1}{d} (V_1 - V_2)$$
$$\frac{\partial U_x}{\partial y_1} = \frac{\partial U_x}{\partial y_2} = \frac{\partial U_x}{\partial y_3} = \frac{\partial U_x}{\partial z_1} = \frac{\partial U_x}{\partial z_2} = \frac{\partial U_x}{\partial z_3} = 0$$
$$\frac{\partial U_y}{\partial z_1} = \frac{\partial U_y}{\partial z_2} = \frac{\partial U_y}{\partial z_3} = \frac{\partial U_y}{\partial x_1} = \frac{\partial U_y}{\partial x_2} = \frac{\partial U_y}{\partial x_3} = 0$$
$$\frac{\partial U_z}{\partial x_1} = \frac{\partial U_z}{\partial x_2} = \frac{\partial U_z}{\partial x_3} = \frac{\partial U_z}{\partial y_1} = \frac{\partial U_z}{\partial y_2} = \frac{\partial U_z}{\partial y_3} = 0$$

On vector form and for the nine coordinates of the triangular element it is:

$$\frac{\partial \mathbf{U}}{\partial x_1} = \begin{vmatrix} \frac{V_2 - V_3}{d} \\ 0 \\ 0 \\ 0 \end{vmatrix}$$
$$\frac{\partial \mathbf{U}}{\partial y_1} = \begin{vmatrix} 0 \\ \frac{V_2 - V_3}{d} \\ 0 \\ \frac{\partial \mathbf{U}}{\partial z_1} = \begin{vmatrix} 0 \\ 0 \\ \frac{V_2 - V_3}{d} \\ 0 \\ \frac{\partial \mathbf{U}}{\partial x_2} = \begin{vmatrix} \frac{V_3 - V_1}{d} \\ 0 \\ 0 \\ \frac{\partial \mathbf{U}}{\partial y_2} = \begin{vmatrix} 0 \\ \frac{V_3 - V_1}{d} \\ 0 \\ 0 \\ \frac{\partial \mathbf{U}}{\partial z_2} = \begin{vmatrix} 0 \\ 0 \\ \frac{V_3 - V_1}{d} \\ 0 \\ \frac{V_3 - V_1}{d} \\ 0 \\ \frac{V_3 - V_1}{d} \end{vmatrix}$$

$$\frac{\partial \mathbf{U}}{\partial x_3} = \begin{vmatrix} \frac{V_1 - V_2}{d} \\ 0 \\ 0 \end{vmatrix}$$
$$\frac{\partial \mathbf{U}}{\partial y_3} = \begin{vmatrix} 0 \\ \frac{V_1 - V_2}{d} \\ 0 \end{vmatrix}$$
$$\frac{\partial \mathbf{U}}{\partial z_3} = \begin{vmatrix} 0 \\ 0 \\ \frac{V_1 - V_2}{d} \end{vmatrix}$$

The derivative of the norm of vector \mathbf{U} is

$$|\mathbf{U}|' = \frac{U_x U_x' + U_y U_y' + U_z U_z'}{|\mathbf{U}|}$$

This gives for the nine coordinates of the triangular element:

$$\frac{\partial |\mathbf{U}|}{\partial x_1} = \frac{U_x(V_2 - V_3)}{d|\mathbf{U}|}$$
$$\frac{\partial |\mathbf{U}|}{\partial y_1} = \frac{U_y(V_2 - V_3)}{d|\mathbf{U}|}$$
$$\frac{\partial |\mathbf{U}|}{\partial z_1} = \frac{U_z(V_2 - V_3)}{d|\mathbf{U}|}$$
$$\frac{\partial |\mathbf{U}|}{\partial x_2} = \frac{U_x(V_3 - V_1)}{d|\mathbf{U}|}$$
$$\frac{\partial |\mathbf{U}|}{\partial y_2} = \frac{U_y(V_3 - V_1)}{d|\mathbf{U}|}$$
$$\frac{\partial |\mathbf{U}|}{\partial z_2} = \frac{U_z(V_3 - V_1)}{d|\mathbf{U}|}$$
$$\frac{\partial |\mathbf{U}|}{\partial z_3} = \frac{U_x(V_1 - V_2)}{d|\mathbf{U}|}$$
$$\frac{\partial |\mathbf{U}|}{\partial y_3} = \frac{U_y(V_1 - V_2)}{d|\mathbf{U}|}$$

This leads to the derivatives of α (angle between c and U):

$$\begin{split} \frac{\partial \alpha}{\partial x_1} &= \frac{V_3 - V_2}{d|\mathbf{U}|^2 |\mathbf{c}| \sqrt{1 - \left(\frac{\mathbf{c}.\mathbf{U}}{|\mathbf{c}||\mathbf{U}|}\right)^2}} \left[c_x |\mathbf{U}| - \frac{U_x}{|\mathbf{U}|} \mathbf{c}.\mathbf{U} \right] \\ \frac{\partial \alpha}{\partial y_1} &= \frac{V_3 - V_2}{d|\mathbf{U}|^2 |\mathbf{c}| \sqrt{1 - \left(\frac{\mathbf{c}.\mathbf{U}}{|\mathbf{c}||\mathbf{U}|}\right)^2}} \left[c_y |\mathbf{U}| - \frac{U_y}{|\mathbf{U}|} \mathbf{c}.\mathbf{U} \right] \end{split}$$

$$\begin{split} \frac{\partial \alpha}{\partial z_1} &= \frac{V_3 - V_2}{d|\mathbf{U}|^2 |\mathbf{c}| \sqrt{1 - \left(\frac{\mathbf{c} \cdot \mathbf{U}}{|\mathbf{c}||\mathbf{U}|}\right)^2}} \left[c_z |\mathbf{U}| - \frac{U_z}{|\mathbf{U}|} \mathbf{c} \cdot \mathbf{U} \right] \\ \frac{\partial \alpha}{\partial x_2} &= \frac{V_1 - V_3}{d|\mathbf{U}|^2 |\mathbf{c}| \sqrt{1 - \left(\frac{\mathbf{c} \cdot \mathbf{U}}{|\mathbf{c}||\mathbf{U}|}\right)^2}} \left[c_x |\mathbf{U}| - \frac{U_x}{|\mathbf{U}|} \mathbf{c} \cdot \mathbf{U} \right] \\ \frac{\partial \alpha}{\partial y_2} &= \frac{V_1 - V_3}{d|\mathbf{U}|^2 |\mathbf{c}| \sqrt{1 - \left(\frac{\mathbf{c} \cdot \mathbf{U}}{|\mathbf{c}||\mathbf{U}|}\right)^2}} \left[c_y |\mathbf{U}| - \frac{U_y}{|\mathbf{U}|} \mathbf{c} \cdot \mathbf{U} \right] \\ \frac{\partial \alpha}{\partial z_2} &= \frac{V_1 - V_3}{d|\mathbf{U}|^2 |\mathbf{c}| \sqrt{1 - \left(\frac{\mathbf{c} \cdot \mathbf{U}}{|\mathbf{c}||\mathbf{U}|}\right)^2}} \left[c_z |\mathbf{U}| - \frac{U_z}{|\mathbf{U}|} \mathbf{c} \cdot \mathbf{U} \right] \\ \frac{\partial \alpha}{\partial x_3} &= \frac{V_2 - V_1}{d|\mathbf{U}|^2 |\mathbf{c}| \sqrt{1 - \left(\frac{\mathbf{c} \cdot \mathbf{U}}{|\mathbf{c}||\mathbf{U}|}\right)^2}} \left[c_x |\mathbf{U}| - \frac{U_x}{|\mathbf{U}|} \mathbf{c} \cdot \mathbf{U} \right] \\ \frac{\partial \alpha}{\partial y_3} &= \frac{V_2 - V_1}{d|\mathbf{U}|^2 |\mathbf{c}| \sqrt{1 - \left(\frac{\mathbf{c} \cdot \mathbf{U}}{|\mathbf{c}||\mathbf{U}|}\right)^2}} \left[c_y |\mathbf{U}| - \frac{U_y}{|\mathbf{U}|} \mathbf{c} \cdot \mathbf{U} \right] \\ \frac{\partial \alpha}{\partial z_3} &= \frac{V_2 - V_1}{d|\mathbf{U}|^2 |\mathbf{c}| \sqrt{1 - \left(\frac{\mathbf{c} \cdot \mathbf{U}}{|\mathbf{c}||\mathbf{U}|}\right)^2}} \left[c_y |\mathbf{U}| - \frac{U_y}{|\mathbf{U}|} \mathbf{c} \cdot \mathbf{U} \right] \\ \frac{\partial \alpha}{\partial z_3} &= \frac{V_2 - V_1}{d|\mathbf{U}|^2 |\mathbf{c}| \sqrt{1 - \left(\frac{\mathbf{c} \cdot \mathbf{U}}{|\mathbf{c}||\mathbf{U}|}\right)^2}} \left[c_z |\mathbf{U}| - \frac{U_z}{|\mathbf{U}|} \mathbf{c} \cdot \mathbf{U} \right] \end{aligned}$$

Evaluation for the stiffness of the tangential force on the U twines The tangential force on U twines is

$$\mathbf{T} = |\mathbf{T}| \frac{\mathbf{F} \wedge (\mathbf{c} \wedge \mathbf{F})}{|\mathbf{F} \wedge (\mathbf{c} \wedge \mathbf{F})|}$$

Following the definition of ${\bf F}_1:$

$$\mathbf{T} = |\mathbf{T}| \frac{[\mathbf{U} \land (\mathbf{c} \land \mathbf{U})] \land \{\mathbf{c} \land [\mathbf{U} \land (\mathbf{c} \land \mathbf{U})]\}}{|[\mathbf{U} \land (\mathbf{c} \land \mathbf{U})] \land \{\mathbf{c} \land [\mathbf{U} \land (\mathbf{c} \land \mathbf{U})]\}|}$$

It follows that

$$\mathbf{T} = |\mathbf{T}| \frac{[(\mathbf{U}.\mathbf{U})(\mathbf{c}.\mathbf{c}) - (\mathbf{U}.\mathbf{c})^2](\mathbf{U}.\mathbf{c})\mathbf{U}}{|[(\mathbf{U}.\mathbf{U})(\mathbf{c}.\mathbf{c}) - (\mathbf{U}.\mathbf{c})^2](\mathbf{U}.\mathbf{c})\mathbf{U}|}$$

or

$$\mathbf{T} = |\mathbf{T}| \frac{[|\mathbf{U}|^2 |\mathbf{c}|^2 - (|\mathbf{U}| |\mathbf{c}| cos\alpha)^2] |\mathbf{U}| |\mathbf{c}| cos\alpha \mathbf{U}}{[[|\mathbf{U}|^2 |\mathbf{c}|^2 - (|\mathbf{U}| |\mathbf{c}| cos\alpha)^2] |\mathbf{U}| |\mathbf{c}| cos\alpha \mathbf{U}]}$$

 and

$$\mathbf{T} = |\mathbf{T}| \frac{\cos \alpha \mathbf{U}}{|\cos \alpha| |\mathbf{U}|}$$

3.3. THE FORCES ON THE NETTING

The $x \ y$ and z components are as follows:

$$\mathbf{T}_{x} = |\mathbf{T}| \frac{\cos \alpha \mathbf{U}_{x}}{|\cos \alpha||\mathbf{U}|}$$
$$\mathbf{T}_{y} = |\mathbf{T}| \frac{\cos \alpha \mathbf{U}_{y}}{|\cos \alpha||\mathbf{U}|}$$
$$\mathbf{T}_{z} = |\mathbf{T}| \frac{\cos \alpha \mathbf{U}_{z}}{|\cos \alpha||\mathbf{U}|}$$

The derivative of \mathbf{T}_x is:

$$\begin{split} \mathbf{T}'_{x} &= |\mathbf{T}|' \frac{\cos \alpha \mathbf{U}_{x}}{|\cos \alpha||\mathbf{U}|} + |\mathbf{T}| \frac{(\cos \alpha \mathbf{U}_{x})'|\cos \alpha||\mathbf{U}| - \cos \alpha \mathbf{U}_{x}(|\cos \alpha||\mathbf{U}|)'}{(|\cos \alpha||\mathbf{U}|)^{2}} \\ \mathbf{T}'_{x} &= |\mathbf{T}|' \frac{\cos \alpha \mathbf{U}_{x}}{|\cos \alpha||\mathbf{U}|} \\ &+ \frac{|\mathbf{T}|}{|\cos \alpha||\mathbf{U}|} (\cos \alpha \mathbf{U}'_{x} - \sin \alpha \alpha' \mathbf{U}_{x}) \\ &- \frac{|\mathbf{T}|\cos \alpha \mathbf{U}_{x}}{(|\cos \alpha||\mathbf{U}|)^{2}} \left[|\cos \alpha| \frac{\mathbf{U}_{x}\mathbf{U}'_{x} + \mathbf{U}_{y}\mathbf{U}'_{y} + \mathbf{U}_{z}\mathbf{U}'_{z}}{|\mathbf{U}|} - \frac{\cos \alpha}{|\cos \alpha|} \sin \alpha \alpha' |\mathbf{U}| \right] \\ \mathbf{T}'_{x} &= |\mathbf{T}|' \frac{\mathbf{T}_{x}}{|\mathbf{T}|} + \frac{|\mathbf{T}|}{|\cos \alpha||\mathbf{U}|} (\cos \alpha \mathbf{U}'_{x} - \sin \alpha \alpha' \mathbf{U}_{x}) \\ &- \frac{\mathbf{T}_{x}}{|\cos \alpha||\mathbf{U}|} \left[|\cos \alpha| \frac{\mathbf{U}_{x}\mathbf{U}'_{x} + \mathbf{U}_{y}\mathbf{U}'_{y} + \mathbf{U}_{z}\mathbf{U}'_{z}}{|\mathbf{U}|} - \frac{\cos \alpha}{|\cos \alpha|} \sin \alpha \alpha' |\mathbf{U}| \right] \\ \mathbf{T}'_{y} &= |\mathbf{T}|' \frac{\mathbf{T}_{y}}{|\mathbf{T}|} + \frac{|\mathbf{T}|}{|\cos \alpha||\mathbf{U}|} (\cos \alpha \mathbf{U}'_{y} - \sin \alpha \alpha' \mathbf{U}_{y}) \\ &- \frac{\mathbf{T}_{y}}{|\cos \alpha||\mathbf{U}|} \left[|\cos \alpha| \frac{\mathbf{U}_{x}\mathbf{U}'_{x} + \mathbf{U}_{y}\mathbf{U}'_{y} + \mathbf{U}_{z}\mathbf{U}'_{z}}{|\mathbf{U}|} - \frac{\cos \alpha}{|\cos \alpha|} \sin \alpha \alpha' |\mathbf{U}| \right] \\ \mathbf{T}'_{z} &= |\mathbf{T}|' \frac{\mathbf{T}_{z}}{|\mathbf{T}|} + \frac{|\mathbf{T}|}{|\cos \alpha||\mathbf{U}|} (\cos \alpha \mathbf{U}'_{z} - \sin \alpha \alpha' \mathbf{U}_{z}) \\ &- \frac{\mathbf{T}_{z}}{|\cos \alpha||\mathbf{U}|} \left[|\cos \alpha| \frac{\mathbf{U}_{x}\mathbf{U}'_{x} + \mathbf{U}_{y}\mathbf{U}'_{y} + \mathbf{U}_{z}\mathbf{U}'_{z}}{|\mathbf{U}|} - \frac{\cos \alpha}{|\cos \alpha|} \sin \alpha \alpha' |\mathbf{U}| \right] \end{aligned}$$

The derivative of the amplitude of the tangential force is

$$|\mathbf{T}|' = f \frac{1}{2} \rho C_d D l_0 |\mathbf{c}|^2 \left([\cos(\alpha)]^2 \right)' \frac{d}{2}$$

which is

$$|\mathbf{T}|' = -\frac{d}{2} f \rho C_d D l_0 |\mathbf{c}|^2 \cos(\alpha) \sin(\alpha) \alpha'$$

Evaluations for the stiffness of the normal and tangential forces on the V twines This evaluations are identical to the previous, but with V and β used in place of U and α .

3.3.4 Twine flexion in Netting plane

The resistance to twine bending in the plane of the net is also called the mesh opening stiffness (Figure 3.13). In a first approximation, this stiffness is neglected, but the use of steeper nets makes it necessary to take this mechanical phenomenon into account in numerical models. Currently, only O'Neill (1994, 2004) and the present model take this mesh opening stiffness into account.

Figure 3.13: Demonstration of mesh opening stiffness. Deformation remains limited despite the weight added to the bottom of the net on (b).

In the present model, the half angle (α) between the twine vectors (**U** and **V**) could lead to a couple between twine vectors (**U** and **V**). This angle is calculated by

$$\alpha = \frac{1}{2}acos(\frac{\mathbf{U}.\mathbf{V}}{|\mathbf{U}||\mathbf{V}|})$$

The couple on a knot due to the U twine is equilibrated by the couple of the V twine; otherwise the knot would not be in equilibrium. These couples are approximated in the model by

$$C_u = -C_v = H(\alpha - \alpha_0)$$

where α_0 is the angle between the unstressed twines (without couple on twines) and H is the mesh opening stiffness (N.m/Rad).

This couple varies linearly with the angle. O'Neill (1994, 2004) suggests another formulation, since he models the twines as beams.

Forces at the vertices of the triangular element, mechanically equivalent to the mesh opening stiffness, are calculated using the principle of virtual work:

If ∂x_1 is a virtual displacement along the x axis of vertex 1, then the external work (W_e) is

$$W_e = F x_1 \partial x_1$$

3.3. THE FORCES ON THE NETTING

where Fx_1 is the effort along the x axis at vertex 1 of a triangular element. This displacement creates a change in angle α , and therefore an internal work (W_i) :

$$W_i = \frac{d}{2}(C_u\partial\alpha + C_v\partial\alpha)$$

$$d = (U_2 - U_1)(V_1 - V_3) - (U_3 - U_1)(V_1 - V_2)$$

where d/2 is the number of nodes in a triangular element. Since the internal work is equal to the external work,

$$Fx_1 = C_u d \frac{\partial \alpha}{\partial x_1}$$

This gives, for all the force components at the vertices of the triangular element,

$$Fw_i = H(\alpha - \alpha_0) d\frac{\partial \alpha}{\partial w_i}$$

where w = x, y, and z, and i = 1, 2, and 3. The derivative $\frac{\partial \alpha}{\partial w_i}$ of α relative to the coordinates w_i of vertices, which is necessary for calculating the forces, is

$$\frac{\partial \alpha}{\partial w_i} = \frac{\mathbf{V}_w v_i - \mathbf{U}_w u_i - \frac{\mathbf{U}_w (\mathbf{U}, \mathbf{V}) v_i}{|\mathbf{U}|^2} - \frac{\mathbf{V}_w (\mathbf{U}, \mathbf{V}) u_i}{|\mathbf{V}|^2}}{2dsin(\alpha) |\mathbf{U}| |\mathbf{V}|}$$

where w = x, y, and z, and i = 1, 2, and 3.

The stiffness matrix $(-\mathbf{F}'(\mathbf{X}))$ is completed by calculating the derivative component of efforts related to the coordinates of the vertices of the triangular element:

$$-\frac{\partial F_w i}{\partial t j}$$

where as above, w = x, y, and z, and i = 1, 2, and 3, and t = x, y, and z, and j = 1, 2, and 3.

3.3.5 Twine flexion outside the netting plane

Figure 3.14: The net bends under its own weight, which highlights the bending stiffness of the net.

To our knowledge, no numerical model, except the present one, takes into account this mechanical property of the nets (Figure 3.14). The angle between the U twine of a triangle (\mathbf{U}_a in Figure 3.15) and its neighbour (\mathbf{U}_b) is constant along the side common to the two triangular elements. This angle quantifies the bending of the twine.

The bending stiffness of the U twine tends to keep the twine straight. The equation governing the bending is as follows:

$$C = \frac{EI}{\rho}$$

C: bending couple on the U twine (Nm),

EI: flexural stiffness, which is Young's modulus by inertia (Nm^2) ,

 ρ : radius of curvature of the U twine (m).

This couple is generated, in the present modelling, when two successive triangular elements are bent or, more precisely, when the U twine is bent to the passage of a triangular element with its neighbour. The couple will then generate forces on the vertices (1, 2, 3, 4 in Figure 3.15) on the two adjacent triangular elements. Obviously the bending of the V twines also leads to a couple. In the following only the effect of bending on the U twines is described; the bending on V twines has to be taken into account in the same way.

The radius of the curvature is estimated from the average lengths of twine U in each triangular element (Figure 3.16). These average lengths are calculated using the average number of twine

Figure 3.15: Two triangular elements (134 and 243), the coordinates of which, in number of twines, are noted. The angle between the twine vectors $\mathbf{U}_{\mathbf{a}}$ and $\mathbf{U}_{\mathbf{b}}$ leads to a bending couple between the two triangular elements.

vectors $(\mathbf{U}_{\mathbf{a}} \text{ and } \mathbf{U}_{\mathbf{b}})$ by the U twine in the two triangular elements $(n_a \text{ and } n_b)$.

The twine vectors of the two triangular elements (see section 3.2.1 page 32) are as follows:

$$U_{a} = \frac{V_{4} - V_{1}}{d_{a}} \mathbf{13} - \frac{V_{3} - V_{1}}{d_{a}} \mathbf{14}$$
$$V_{a} = \frac{U_{4} - U_{1}}{d_{a}} \mathbf{13} - \frac{U_{3} - U_{1}}{d_{a}} \mathbf{14}$$
$$U_{b} = \frac{V_{3} - V_{2}}{d_{b}} \mathbf{24} - \frac{V_{4} - V_{2}}{d_{b}} \mathbf{23}$$
$$V_{b} = \frac{U_{3} - U_{2}}{d_{b}} \mathbf{24} - \frac{U_{4} - U_{2}}{d_{b}} \mathbf{23}$$

 U_i, V_i : coordinates of vertex i in number of twines (twine coordinates). With side vectors:

$$\mathbf{13} = \begin{vmatrix} x_3 - x_1 \\ y_3 - y_1 \\ z_3 - z_1 \end{vmatrix}$$

Figure 3.16: Profile view of the two triangular elements. The radius of curvature (ρ) is estimated from the average length of twine vectors **U** in each triangle : $n_a \mathbf{U}_{\mathbf{a}}$ and $n_b \mathbf{U}_{\mathbf{b}}$.

$$\mathbf{24} = \begin{vmatrix} x_4 - x_2 \\ y_4 - y_2 \\ z_4 - z_2 \end{vmatrix}$$

The numbers of twine vectors $(\mathbf{U_a} \text{ and } \mathbf{U_b})$ for the U twines in the two triangular elements are

$$d_a = (U_3 - U_1)(V_4 - V_1) - (U_4 - U_1)(V_3 - V_1)$$

$$d_b = (U_4 - U_2)(V_3 - V_2) - (U_3 - U_2)(V_4 - V_2)$$

The average numbers of twine vectors ($\mathbf{U}_{\mathbf{a}}$ and $\mathbf{U}_{\mathbf{b}}$) by U twine are calculated from the number of twine vectors in the triangular elements and the length of the common side in twine coordinates ($V_3 - V_4$):

$$n_a = \frac{d_a}{2|V_3 - V_4|}$$
$$n_b = \frac{d_b}{2|V_3 - V_4|}$$

The radius of the curvature (ρ) is calculated from the circumscribed circle in the triangle of sides $na\mathbf{U}_{\mathbf{a}}$, $nb\mathbf{U}_{\mathbf{b}}$ and $na\mathbf{U}_{\mathbf{a}} + nb\mathbf{U}_{\mathbf{b}}$, as shown in Figure 3.16. The side lengths of the triangle are

$$\begin{split} A &= |n_a \mathbf{U_a}| \\ B &= |n_b \mathbf{U_b}| \\ C &= |n_a \mathbf{U_a} + n_b \mathbf{U_b}| \end{split}$$

3.3. THE FORCES ON THE NETTING

The equations of the triangle, which can be obtained in a mathematical compendium, give the radius of curvature:

$$\rho = \frac{ABC}{4S}$$

where S and p, the surface and the half perimeter of the triangle, are

$$S = \sqrt{p(p-A)(p-B)(p-C)}$$
$$p = \frac{A+B+C}{2}$$

The forces on the vertices (1, 2, 3 and 4) of the two triangular elements due to the twine bending are calculated using the principle of virtual work. In case of the X component of the force on vertex 1 (F_{x1}), a displacement ($\partial x1$) is defined along X axis of vertex 1. This displacement generates an external work:

$$W_e = F_{x1}\partial x1$$

This movement also causes a variation of angle $(\partial \alpha)$ between the twine vectors $(\mathbf{U}_{\mathbf{a}} \text{ and } \mathbf{U}_{\mathbf{b}})$ of the two triangular elements. This variation induces an internal work:

$$W_i = C\partial\alpha(V_3 - V_4)$$

According to the principle of virtual work, these works are equal, which gives the following:

$$F_{wi} = \frac{EI}{\rho} \frac{\partial \alpha}{\partial wi} (V_3 - V_4)$$

w: directions x, y, and z,

i: vertices 1, 2, 3, and 4,

 $V_3 - V_4$: number of twines involved in the bending.

The angle α between the two twine vectors ($\mathbf{U}_{\mathbf{a}}$ and $\mathbf{U}_{\mathbf{b}}$) of the two triangular elements is calculated with the dot product of twine vectors (Figure 3.16):

$$cos(\alpha) = \frac{\mathbf{U}_{\mathbf{a}}.\mathbf{U}_{\mathbf{b}}}{|\mathbf{U}_{\mathbf{a}}||\mathbf{U}_{\mathbf{b}}|}$$

The 12 derivatives of α relative to the coordinates of the vertices of the two triangular elements $\left(\frac{\partial \alpha}{\partial wi}\right)$ are therefore required to calculate the effort on the vertices. They are as follows:

$$\begin{aligned} \frac{\partial \alpha}{\partial w_1} &= (V_3 - V_4) \frac{(\mathbf{U}_{\mathbf{a}}.\mathbf{U}_{\mathbf{b}})U_{aw} - U_{bw}|\mathbf{U}_{\mathbf{a}}|^2}{|\mathbf{U}_{\mathbf{a}}|^3|\mathbf{U}_{\mathbf{b}}|d_a sin(\alpha)} \\ \frac{\partial \alpha}{\partial w_2} &= (V_4 - V_3) \frac{(\mathbf{U}_{\mathbf{a}}.\mathbf{U}_{\mathbf{b}})U_{bw} - U_{aw}|\mathbf{U}_{\mathbf{b}}|^2}{|\mathbf{U}_{\mathbf{b}}|^3|\mathbf{U}_{\mathbf{a}}|d_b sin(\alpha)} \end{aligned}$$

$$\frac{\partial \alpha}{\partial w_3} = (V_4 - V_1) \frac{(\mathbf{U}_{\mathbf{a}}.\mathbf{U}_{\mathbf{b}})U_{aw} - U_{bw}|\mathbf{U}_{\mathbf{a}}|^2}{|\mathbf{U}_{\mathbf{a}}|^3|\mathbf{U}_{\mathbf{b}}|d_a sin(\alpha)} + (V_2 - V_4) \frac{(\mathbf{U}_{\mathbf{a}}.\mathbf{U}_{\mathbf{b}})U_{bw} - U_{aw}|\mathbf{U}_{\mathbf{b}}|^2}{|\mathbf{U}_{\mathbf{b}}|^3|\mathbf{U}_{\mathbf{a}}|d_b sin(\alpha)}$$

$$\frac{\partial \alpha}{\partial w4} = (V_1 - V_3) \frac{(\mathbf{U}_{\mathbf{a}}.\mathbf{U}_{\mathbf{b}})U_{aw} - U_{bw}|\mathbf{U}_{\mathbf{a}}|^2}{|\mathbf{U}_{\mathbf{a}}|^3|\mathbf{U}_{\mathbf{b}}|d_a sin(\alpha)} + (V_3 - V_2) \frac{(\mathbf{U}_{\mathbf{a}}.\mathbf{U}_{\mathbf{b}})U_{bw} - U_{aw}|\mathbf{U}_{\mathbf{b}}|^2}{|\mathbf{U}_{\mathbf{b}}|^3|\mathbf{U}_{\mathbf{a}}|d_b sin(\alpha)}$$

Here, U_{aw} is the component along the w axis of $\mathbf{U}_{\mathbf{a}}$. In this case w is the axis consisting of x, y, and z. Obviously, U_{bw} is the component along the w axis of $\mathbf{U}_{\mathbf{b}}$.

The efforts on the four vertices of the two triangular elements due to the bending of the U twine between these two elements have been previously calculated.

The stiffness matrix (-F'(X)) is completed by calculating the derivative of the 12 components of the forces relative to the 12 coordinates of the vertices of the two triangular elements. The 144 components of this matrix are

$$-\frac{\partial F_{wi}}{\partial tj}$$

With, as above: w: x, y, and z. i: 1, 2, 3, and 4.

And more: t: x, y, and z, j: 1, 2, 3, and 4.

3.3.6 Fish catch pressure

Figure 3.17: Measurement in a flume tank tests (cross) and numerical modelling (mesh) for a scale (1/3) model of North Sea cod-end with 300kg of catch.

The mechanical effect of caught fish (Figure 3.17) in a net is estimated by a pressure (Anon 1999). This pressure is exerted directly on the triangular elements in contact with the fish. In the case of water speed relative to that catch:

$$p = \frac{1}{2}\rho C_d v^2$$

- p: pressure of the catch on the net (Pa),
- ρ : density of water (kg/m^3) ,

 C_d : drag coefficient,

v: current amplitude (m/s).

This pressure is then applied to the surface of the triangular element $(\frac{12 \wedge 13}{2})$. The resultant force is directed perpendicular to the triangular element. The effort on each vertex is that force by 1/3.

$$\mathbf{F}_1 = \frac{\mathbf{12} \wedge \mathbf{13}}{2} \frac{p}{3}$$
$$\mathbf{F}_2 = \frac{\mathbf{12} \wedge \mathbf{13}}{2} \frac{p}{3}$$
$$\mathbf{F}_3 = \frac{\mathbf{12} \wedge \mathbf{13}}{2} \frac{p}{3}$$

With sides vectors:

$$\mathbf{12} = \begin{vmatrix} x_2 - x_1 \\ y_2 - y_1 \\ z_2 - z_1 \end{vmatrix}$$
$$\mathbf{13} = \begin{vmatrix} x_3 - x_1 \\ y_3 - y_1 \\ z_3 - z_1 \end{vmatrix}$$

That gives:

$$\mathbf{F}_{1x} = \frac{p}{6} \left[(y_2 - y_1)(z_3 - z_1) - (z_2 - z_1)(y_3 - y_1) \right]$$
$$\mathbf{F}_{1y} = \frac{p}{6} \left[(z_2 - z_1)(x_3 - x_1) - (x_2 - x_1)(z_3 - z_1) \right]$$
$$\mathbf{F}_{1z} = \frac{p}{6} \left[(x_2 - x_1)(y_3 - y_1) - (y_2 - y_1)(x_3 - x_1) \right]$$

The contribution of this effect to the stiffness matrix is calculated through the derivatives of the forces. The derivatives of \mathbf{F}_1 is

$${f F}_1' = ({f 12}' \wedge {f 13} + {f 12} \wedge {f 13}') {p\over 6}$$

The derivatives of \mathbf{F}_1 , \mathbf{F}_2 , and \mathbf{F}_3 are identical:

$$\begin{aligned} \frac{\partial \mathbf{F}_1}{\partial x_1} &= \frac{p}{6} \begin{vmatrix} 0\\ z_3 - z_2\\ y_2 - y_3 \end{vmatrix} \\ \frac{\partial \mathbf{F}_1}{\partial y_1} &= \frac{p}{6} \begin{vmatrix} z_2 - z_3\\ 0\\ x_3 - x_2 \end{vmatrix} \\ \frac{\partial \mathbf{F}_1}{\partial z_1} &= \frac{p}{6} \begin{vmatrix} z_2 - z_3\\ 0\\ x_2 - x_3\\ 0\end{vmatrix} \\ \frac{\partial \mathbf{F}_1}{\partial x_2} &= \frac{p}{6} \begin{vmatrix} 0\\ z_1 - z_3\\ y_3 - y_1 \end{vmatrix} \\ \frac{\partial \mathbf{F}_1}{\partial y_2} &= \frac{p}{6} \begin{vmatrix} 0\\ x_1 - x_3\\ 0\\ x_1 - x_3\\ 0\end{vmatrix} \\ \frac{\partial \mathbf{F}_1}{\partial z_2} &= \frac{p}{6} \begin{vmatrix} y_1 - y_3\\ x_3 - x_1\\ 0\\ x_1 - x_3\end{vmatrix} \\ \frac{\partial \mathbf{F}_1}{\partial z_2} &= \frac{p}{6} \begin{vmatrix} y_1 - y_3\\ x_3 - x_1\\ 0\\ y_1 - y_2\end{vmatrix} \\ \frac{\partial \mathbf{F}_1}{\partial y_3} &= \frac{p}{6} \begin{vmatrix} z_1 - z_2\\ y_1 - y_2\\ 0\\ z_2 - z_1\\ y_1 - y_2\end{vmatrix} \\ \frac{\partial \mathbf{F}_1}{\partial y_3} &= \frac{p}{6} \begin{vmatrix} z_1 - z_2\\ 0\\ x_2 - x_1\\ 0\end{vmatrix} \end{aligned}$$

3.3.7Dynamic: force of inertia

The force of inertia is related to accelerations of the net and of the water particles just around the net. The calculation is done for each triangular element in three parts, one for each vertex, since the acceleration is not constant over the entire surface of each triangular element. Under these conditions, the parameters are local parameters at each vertex, including the acceleration and the mass. The mass per vertex is considered the third of the total mass of netting of the triangular element.

The force of inertia on each vertex of a triangular element mesh is estimated by (Hallam 1977):

$$\mathbf{F_i} = M_a(\boldsymbol{\gamma_h} - \boldsymbol{\gamma}) + \rho V \boldsymbol{\gamma_h} - M \boldsymbol{\gamma}$$

 \mathbf{F}_{i} : inertial force on the vertex i(N), M_a : added mass (kg) of 1/3 of the triangular element, M: mass of 1/3 of the net (kg),

V: volume of 1/3 of the net (m^3) ,

 ρ : density of water (kg/m^3) ,

 γ : acceleration of the vertex (m/s^2) ,

 γ_h : acceleration of the water around the vertex (m/s^2) .

The vertex speed is calculated as follows:

$$\mathbf{v} = \frac{\mathbf{x_1} - \mathbf{x}}{\Delta t}$$

The acceleration of the vertex is

$$\gamma = \frac{\mathbf{v_1} - \mathbf{v}}{\Delta t}$$

which gives

$$\gamma = \frac{\mathbf{x_2} - 2\mathbf{x_1} + \mathbf{x}}{\Delta t^2}$$

In this case, the contribution to the stiffness matrix, from the derivative of this inertia, is calculated by

$$-F' = -\frac{\partial \mathbf{F_i}}{\partial \mathbf{x}}$$

which leads to

$$-F' = (M + M_a) \frac{\partial \gamma}{\partial \mathbf{x}}$$

and

$$-F' = \frac{M + M_a}{\Delta t^2}$$

With: **x**: position at t(m), $\mathbf{x_1}$: position at $t - \Delta t$ (m), $\mathbf{x_2}$: position at $t - 2\Delta t$ (m), F': derivative of the force of inertia relative to the position(N/m), Δt : time step (s).

3.3.8 Dynamic: drag force

The drag is related to the net and the relative speed of water particles just around the net. The calculation is done for each triangular element in three parts, one for each vertex, since this speed is not constant over the entire surface of each triangular element. Under these conditions the local parameters at each vertex are the vertex speed and one third of the number of twine vectors for the triangular element. The calculation is done for twines U and V.

The formulation for the twine drag is based on the assumptions of Landweber and Richtmeyer, as described earlier (section 3.3.3, page 47). The drag on the U twines applied on vertex i of the triangular element takes into account 1/3 of the number of U twine vectors in the triangular element. This drag is as follows:

$$|\mathbf{F}_{\mathbf{i}}| = \frac{d}{6} \frac{1}{2} \rho C_d D l_o(|\mathbf{c}_{\mathbf{i}}|sin(\theta))^2$$
$$|\mathbf{T}_{\mathbf{i}}| = \frac{d}{6} f \frac{1}{2} \rho C_d D l_o(|\mathbf{c}_{\mathbf{i}}|cos(\theta))^2$$

 F_i : normal force to the twines (N) on vertex i, this expression coming from the assumptions of Landweber,

 T_i : tangential force (N) on vertex i, from Richtmeyer's assumption,

 ρ : density of water (kg/m^3) ,

Cd: normal drag coefficient,

f: tangential coefficient,

D: diameter of twines U(m),

 l_o : length of twine vectors U(m),

 c_i : amplitude of the relative velocity of the water at vertex i (m/s),

 $\theta:$ angle between the twine vectors U and the relative velocity (radians),

 $\frac{d}{6}$: one third of the number of twine vectors U in the triangular element.

The angle θ between the twine vector **U** and the relative velocity is calculated by

$$cos(\theta) = rac{\mathbf{c}_i \mathbf{U}}{|\mathbf{c}_i||\mathbf{U}|}$$

The directions of the drag in case of twine vector **U** are as follows:

$$\begin{split} \frac{\mathbf{F}_{i}}{|\mathbf{F}_{i}|} &= \frac{\mathbf{U}}{|\mathbf{U}|} \wedge \frac{\mathbf{c}_{i} \wedge \mathbf{U}}{|\mathbf{c}_{i}||\mathbf{U}|} \\ \frac{\mathbf{T}_{i}}{|\mathbf{T}_{i}|} &= \frac{\mathbf{F}_{i}}{|\mathbf{F}_{i}|} \wedge \frac{\mathbf{c}_{i} \wedge \mathbf{U}}{|\mathbf{c}_{i}||\mathbf{U}|} \end{split}$$

The drag amplitude on twines V is calculated following the same scheme.

3.3. THE FORCES ON THE NETTING

3.3.9 Buoyancy and weight

Buoyancy and weight are vertical forces (along the z axis, if it is the vertical axis). Their expression is summed in the following:

$$F_z = d\pi \frac{D^2}{4} l_0 (\rho_{netting} - \rho)g$$

 F_z : weight of the net once immersed (N),

d: number of twine vectors ${\bf U}$ and twine vectors ${\bf V}$ per triangular element,

 ρ : water density (kg/m^3) ,

 $\rho_{netting}$: net density (kg/m^3) ,

D: diameter of twines (m),

g: gravity of the Earth (around $9.81m/s^2$),

 l_0 : length of twine vectors (m).

The length of the twine vectors is approximated by the unstretched twine vector l_0 , since the elongation is generally quite small.

There is a contribution of this force to the stiffness matrix when the netting crosses the water surface. In this case there is a variation of force with the immersion. This contribution is not described here.

Contact between knots

It happens quite frequently that the nets are so close that the nodes come into contact with each other. This contact limits the closing of mesh (Figure 3.18).

Figure 3.18: Comparison between simulations (net) and flume tank tests (crosses) of trawl codends (Anon 1999). Between 2.5 and 3.5 m the diameter is constant. This is due to contact between the nodes of the net.

An effort similar to that described in section 3.3.4 (page 56) has been introduced to take into account this feature. This effort appears only when the twines are close enough, that is, when the angle between U and V twines is below a critical angle (α_{mini}). This angle is related to the node size and mesh side as follows (Figure 3.18):

$$\alpha_{mini} = 2 \arcsin\left[\frac{knot_{size}}{2mesh_{side}}\right]$$

 α_{mini} : limit angle of contact between twines (rad), $knot_{size}$: size of the node (m), $mesh_{side}$: side of the mesh or length of twine vectors (m).

The mesh_{side} could be the length of the twine vector along the U twine ($|\mathbf{U}|$) or the length of the twine vector along the V twine ($|\mathbf{V}|$). To avoid this choice (between $|\mathbf{U}|$ and $|\mathbf{V}|$), this length can be approximated by the unstretched length l_0 of the twine vector.

A couple is generated between the twines if the angle between them is less than the minimal angle:

$$\begin{cases} C = H(\alpha - \alpha_{mini}) & if \quad \alpha <= \alpha_{mini} \\ C = 0 & if \quad \alpha > \alpha_{mini} \end{cases}$$

C: couple between the twines due to the contact between knots (Nm),

 α : angle between twines U and V (rad),

H: stiffness (Nm/Rad).

This stiffness is not well known. Therefore, arbitrary values can be used, such as the following, proportional to the elongation stiffness of the twine (EA):

$$H = \frac{1}{100} \frac{mesh_{side}^2 EA}{knot_{size}}$$

Figure 3.19: The size of the knot limits the closure of the mesh. The minimal angle between twines is due to the size of the knot and the side of the mesh (which is also the length of twine vector).

A: section of the twine (m^2) , E: Young's modulus (Pa).

The forces on the vertices of triangular elements and the stiffness use the same expressions as those described in section 3.3.4 (page 56).

Chapter 4

The bar finite element for cable

4.1 Principle

The cables are split into bar elements (Figure 4.1). The greater the number of bars, the better the representation of the curvature.

From the position \mathbf{X} of the extremities of the bar elements the forces \mathbf{F} on these extremities are calculated. The bar elements, in the present modelling, respect a couple of hypotheses. The first is that the bar element is straight. The second is that the bar element is elastic. These hypotheses make possible the calculation of forces on the extremities of the bar element.

Figure 4.1: View of three cables split into bar elements. The nodes number are noted.

4.2 Tension on bars

4.2.1 Force vector

The forces on the extremities of the bar elements are due to the tension in the bar (Figure 4.2).

Figure 4.2: Tension forces F1 and F2 on the extremities of the bar due to its tension.

If the position of the extremities are noted 1 and 2, the length of the bar is:

$$l = \sqrt{12.12}$$

With:

$$\mathbf{12} = \begin{vmatrix} x_2 - x_1 \\ y_2 - y_1 \\ z_2 - z_1 \end{vmatrix}$$

The tension in the bar is:

$$|\mathbf{F}| = \frac{l - l_0}{l_0} EA$$

E: Young's modulus of the material (N/m^2) ,

A : mechanical section of the cable (m^2) ,

 l_o : unstretched length of the bar element (m).

The force vectors on the two extremities of the bar are

$$\mathbf{F}_1 = |\mathbf{F}| rac{\mathbf{21}}{l}$$
 $\mathbf{F}_2 = |\mathbf{F}| rac{\mathbf{12}}{l}$

The components of these forces are:

$$\mathbf{F}_{1x} = |\mathbf{F}| \frac{x_1 - x_2}{l}$$
$$\mathbf{F}_{1y} = |\mathbf{F}| \frac{y_1 - y_2}{l}$$

$$\mathbf{F}_{1z} = |\mathbf{F}| \frac{z_1 - z_2}{l}$$
$$\mathbf{F}_{2x} = |\mathbf{F}| \frac{x_2 - x_1}{l}$$
$$\mathbf{F}_{2y} = |\mathbf{F}| \frac{y_2 - y_1}{l}$$
$$\mathbf{F}_{2z} = |\mathbf{F}| \frac{z_2 - z_1}{l}$$

4.2.2 Stiffness matrix

The stiffness matrix is as follows:

$$K = \begin{pmatrix} -\frac{\partial F_{1x}}{\partial x_1} & -\frac{\partial F_{1x}}{\partial y_1} & -\frac{\partial F_{1x}}{\partial z_1} & -\frac{\partial F_{1x}}{\partial x_2} & -\frac{\partial F_{1x}}{\partial y_2} & -\frac{\partial F_{1x}}{\partial z_2} \\ -\frac{\partial F_{1y}}{\partial x_1} & -\frac{\partial F_{1y}}{\partial y_1} & -\frac{\partial F_{1y}}{\partial z_1} & -\frac{\partial F_{1y}}{\partial x_2} & -\frac{\partial F_{1y}}{\partial y_2} & -\frac{\partial F_{1y}}{\partial z_2} \\ -\frac{\partial F_{1z}}{\partial x_1} & -\frac{\partial F_{1z}}{\partial y_1} & -\frac{\partial F_{1z}}{\partial z_1} & -\frac{\partial F_{1z}}{\partial x_2} & -\frac{\partial F_{1z}}{\partial y_2} & -\frac{\partial F_{2z}}{\partial z_2} \\ -\frac{\partial F_{2x}}{\partial x_1} & -\frac{\partial F_{2x}}{\partial y_1} & -\frac{\partial F_{2x}}{\partial z_1} & -\frac{\partial F_{2x}}{\partial x_2} & -\frac{\partial F_{2x}}{\partial y_2} & -\frac{\partial F_{2x}}{\partial z_2} \\ -\frac{\partial F_{2y}}{\partial x_1} & -\frac{\partial F_{2y}}{\partial y_1} & -\frac{\partial F_{2y}}{\partial z_1} & -\frac{\partial F_{2x}}{\partial x_2} & -\frac{\partial F_{2y}}{\partial y_2} & -\frac{\partial F_{2x}}{\partial z_2} \\ -\frac{\partial F_{2z}}{\partial x_1} & -\frac{\partial F_{2z}}{\partial y_1} & -\frac{\partial F_{2z}}{\partial z_1} & -\frac{\partial F_{2z}}{\partial x_2} & -\frac{\partial F_{2z}}{\partial y_2} & -\frac{\partial F_{2z}}{\partial z_2} \\ -\frac{\partial F_{2z}}{\partial x_1} & -\frac{\partial F_{2z}}{\partial y_1} & -\frac{\partial F_{2z}}{\partial z_1} & -\frac{\partial F_{2z}}{\partial x_2} & -\frac{\partial F_{2z}}{\partial y_2} & -\frac{\partial F_{2z}}{\partial z_2} \\ -\frac{\partial F_{2z}}{\partial x_1} & -\frac{\partial F_{2z}}{\partial y_1} & -\frac{\partial F_{2z}}{\partial z_1} & -\frac{\partial F_{2z}}{\partial x_2} & -\frac{\partial F_{2z}}{\partial y_2} & -\frac{\partial F_{2z}}{\partial z_2} \\ -\frac{\partial F_{2z}}{\partial x_1} & -\frac{\partial F_{2z}}{\partial y_1} & -\frac{\partial F_{2z}}{\partial z_1} & -\frac{\partial F_{2z}}{\partial x_2} & -\frac{\partial F_{2z}}{\partial y_2} & -\frac{\partial F_{2z}}{\partial z_2} \\ -\frac{\partial F_{2z}}{\partial x_1} & -\frac{\partial F_{2z}}{\partial y_1} & -\frac{\partial F_{2z}}{\partial z_1} & -\frac{\partial F_{2z}}{\partial x_2} & -\frac{\partial F_{2z}}{\partial y_2} & -\frac{\partial F_{2z}}{\partial z_2} \\ -\frac{\partial F_{2z}}{\partial x_1} & -\frac{\partial F_{2z}}{\partial y_1} & -\frac{\partial F_{2z}}{\partial z_1} & -\frac{\partial F_{2z}}{\partial x_2} & -\frac{\partial F_{2z}}{\partial y_2} & -\frac{\partial F_{2z}}{\partial z_2} \\ -\frac{\partial F_{2z}}{\partial x_1} & -\frac{\partial F_{2z}}{\partial y_1} & -\frac{\partial F_{2z}}{\partial z_1} & -\frac{\partial F_{2z}}{\partial x_2} & -\frac{\partial F_{2z}}{\partial y_2} & -\frac{\partial F_{2z}}{\partial z_2} \\ -\frac{\partial F_{2z}}{\partial x_1} & -\frac{\partial F_{2z}}{\partial y_1} & -\frac{\partial F_{2z}}{\partial z_1} & -\frac{\partial F_{2z}}{\partial x_2} & -\frac{\partial F_{2z}}{\partial y_2} & -\frac{\partial F_{2z}}{\partial z_2} \\ -\frac{\partial F_{2z}}{\partial x_1} & -\frac{\partial F_{2z}}{\partial y_2} & -\frac{\partial F_{2z}}{\partial x_2} & -\frac{\partial F_{2z}}{\partial y_2} & -\frac{\partial F_{2z}}{\partial x_2} \\ -\frac{\partial F_{2z}}{\partial y_2} & -\frac{\partial F_{2z}}{\partial x_2} & -\frac{\partial F_{2z}}{\partial y_2} & -\frac{\partial F_{2z}}{\partial x_2} \\ -\frac{\partial F_{2z}}{\partial y_2} & -\frac{\partial F_{2z}}{\partial y_2} & -\frac{\partial F_{2z}}{\partial y_2} & -\frac{\partial F_{2z}}{\partial y_2} & -\frac{\partial F_{2z}}{\partial y_2} \\ -\frac{\partial F_{2z}}{\partial$$

The stiffness matrix is calculated through the derivatives of force components. For the first component that gives:

$$-\frac{\partial F_{1x}}{\partial x_1} = -\frac{\left[\frac{EA}{l_0}\frac{\partial l}{\partial x_1}(x_1 - x_2) + |\mathbf{F}|\frac{\partial (x_1 - x_2)}{\partial x_1}\right]l - |\mathbf{F}|(x_1 - x_2)\frac{\partial l}{\partial x_1}}{l^2}$$

 with

$$\frac{\partial l}{\partial x_1} = \frac{x_2 - x_1}{l}$$

That gives for the 36 components:

$$-\frac{\partial F_{1x}}{\partial x_1} = \frac{\partial F_{1x}}{\partial x_2} = \frac{\partial F_{2x}}{\partial x_1} = -\frac{\partial F_{2x}}{\partial x_2} = \frac{EA}{l^3 lo} \left[l^3 - l^2 lo + lo(x_2 - x_1)^2 \right]$$
$$-\frac{\partial F_{1y}}{\partial y_1} = \frac{\partial F_{1y}}{\partial y_2} = \frac{\partial F_{2y}}{\partial y_1} = -\frac{\partial F_{2y}}{\partial y_2} = \frac{EA}{l^3 lo} \left[l^3 - l^2 lo + lo(y_2 - y_1)^2 \right]$$
$$-\frac{\partial F_{1z}}{\partial z_1} = \frac{\partial F_{1z}}{\partial z_2} = \frac{\partial F_{2z}}{\partial z_1} = -\frac{\partial F_{2z}}{\partial z_2} = \frac{EA}{l^3 lo} \left[l^3 - l^2 lo + lo(z_2 - z_1)^2 \right]$$

$$-\frac{\partial F_{1x}}{\partial y_1} = -\frac{\partial F_{1y}}{\partial x_1} = -\frac{\partial F_{2y}}{\partial x_2} = -\frac{\partial F_{2x}}{\partial y_2} = \frac{\partial F_{2y}}{\partial x_1} = \frac{\partial F_{2x}}{\partial y_1} = \frac{\partial F_{1y}}{\partial x_2} = \frac{\partial F_{1x}}{\partial y_2} = \frac{EA}{l^3} \left[(x_2 - x_1)(y_2 - y_1) \right]$$

$$-\frac{\partial F_{1x}}{\partial z_1} = -\frac{\partial F_{1z}}{\partial x_1} = -\frac{\partial F_{2z}}{\partial x_2} = -\frac{\partial F_{2x}}{\partial z_2} = \frac{\partial F_{2z}}{\partial x_1} = \frac{\partial F_{2x}}{\partial z_1} = \frac{\partial F_{1z}}{\partial x_2} = \frac{\partial F_{1x}}{\partial z_2} = \frac{EA}{l^3} \left[(x_2 - x_1)(z_2 - z_1) \right]$$

$$-\frac{\partial F_{1y}}{\partial z_1} = -\frac{\partial F_{1z}}{\partial y_1} = -\frac{\partial F_{2z}}{\partial y_2} = -\frac{\partial F_{2y}}{\partial z_2} = \frac{\partial F_{2z}}{\partial y_1} = \frac{\partial F_{2y}}{\partial z_1} = \frac{\partial F_{1z}}{\partial y_2} = \frac{\partial F_{1y}}{\partial z_2} = \frac{EA}{l^3} \left[(y_2 - y_1)(z_2 - z_1) \right]$$

4.3 Bending of cables

Cables could have a resistance in bending, such as beams. Beam deformation relates the curvature of the beam to the couple, such as:

$$C_o = \frac{EI}{R}$$

 C_o : the couple on any point of the cable (N.m),

EI: the bending rigidity of the cable $(N.m^2)$,

R: the radius of the cable at the point (m).

To take into account this behaviour in the numerical model, the cables are split into bar elements (Figure 4.3). In case of bending stiffness, there is a couple C_o between consecutive bar elements (Figure 4.4). This couple leads to forces on the extremities of theses two elements.

Figure 4.3: The cable is embedded at top right. It is modelled with bar elements. Each bar is straight and articulated with its neighbour.

4.3.1 Force vector

The forces on the extremities of two consecutive bar elements are due to the bending between the bar elements (Figure 4.4).

The curvature is approximated by the circle passing by the extremities of the two bar elements. The positions of the extremities of the bars allow assessment of this radius (Figure 4.5). From this radius, and if the bending rigidity is known, the model is able to calculate the couple:

$$C_o = \frac{EI}{R}$$

The radius (R) is calculated from the position of the extremities:

Figure 4.4: Representation of two consecutive bars. A couple is introduced to take into account the bending rigidity of the cable. The spring symbolizes the couple.

Figure 4.5: The radius of the curvature is assessed by the circle passing by the extremities of the two bar elements.

$$R = \frac{ABC}{4\sqrt{p(p-A)(p-B)(p-C)}}$$

A(B): length of the first (second) bar (m),

C: distance between the extremities 1 and 3 in Figure 4.5 (m),

p: the half perimeter (m), where

$$p = \frac{A + B + C}{2}$$

Once the couple C_o is calculated, the model assesses the forces on the extremities of the bars using the virtual work principle.

The force component along X on the extremity 1 of the first bar element is estimated by considering a virtual displacement $(\partial x 1)$ along the axis x of the extremity 1 (Figure 4.6). This

displacement leads to an external work, considering $\partial x1$ small and consequently F_{x1} constant:

$$W_e = F_{x1}\partial x1$$

This virtual displacement also induces a change in the angle (α) between bar elements.

Figure 4.6: A virtual displacement (∂x_1) leads to an external work $(F_{x_1}\partial x_1)$ equal to the internal work $(C_o\partial\alpha)$.

This virtual displacement leads to a variation of angle between bars $(\partial \alpha)$, and this variation of angle generates an internal work. If ∂x^{1} is small, $\partial \alpha$ is small and consequently C_{o} is constant. That gives

$$W_i = C_o \partial \alpha$$

Because the forces on the extremities of the two bar elements represent the couple C_o there is equality between the works. That leads to:

$$\begin{aligned} F_{x1} &= C_o \frac{\partial \alpha}{\partial x_1} \quad F_{x2} &= C_o \frac{\partial \alpha}{\partial x_2} \quad F_{x3} &= C_o \frac{\partial \alpha}{\partial x_3} \\ F_{y1} &= C_o \frac{\partial \alpha}{\partial y_1} \quad F_{y2} &= C_o \frac{\partial \alpha}{\partial y_2} \quad F_{y3} &= C_o \frac{\partial \alpha}{\partial y_3} \\ F_{z1} &= C_o \frac{\partial \alpha}{\partial z_1} \quad F_{z2} &= C_o \frac{\partial \alpha}{\partial z_2} \quad F_{z3} &= C_o \frac{\partial \alpha}{\partial z_3} \end{aligned}$$

These forces components are:

$$F_{x1} = \frac{EI}{R\sin\alpha} \left[\frac{(x2-x1)\mathbf{AB}}{A^3B} + \frac{x2-x3}{AB} \right]$$

$$F_{y1} = \frac{EI}{R\sin\alpha} \left[\frac{(y2-y1)\mathbf{AB}}{A^3B} + \frac{y2-y3}{AB} \right]$$

$$F_{z1} = \frac{EI}{R\sin\alpha} \left[\frac{(z2-z1)\mathbf{AB}}{A^3B} + \frac{z2-z3}{AB} \right]$$

$$F_{x2} = \frac{EI}{R\sin\alpha} \left[\frac{(x1-x2)\mathbf{AB}}{A^3B} + \frac{(x3-x2)\mathbf{AB}}{AB^3} + \frac{x3-2x2+x1}{AB} \right]$$

$$F_{y2} = \frac{EI}{R\sin\alpha} \left[\frac{(y1-y2)\mathbf{AB}}{A^3B} + \frac{(y3-y2)\mathbf{AB}}{AB^3} + \frac{y3-2y2+y1}{AB} \right]$$

$$F_{z2} = \frac{EI}{R\sin\alpha} \left[\frac{(z1-z2)\mathbf{AB}}{A^3B} + \frac{(z3-z2)\mathbf{AB}}{AB^3} + \frac{z3-2z2+z1}{AB} \right]$$

$$F_{z3} = \frac{EI}{R\sin\alpha} \left[\frac{(x2-x3)\mathbf{AB}}{AB^3} + \frac{x2-x1}{AB} \right]$$

$$F_{y3} = \frac{EI}{R\sin\alpha} \left[\frac{(y2 - y3)\mathbf{AB}}{AB^3} + \frac{y2 - y1}{AB} \right]$$
$$F_{z3} = \frac{EI}{R\sin\alpha} \left[\frac{(z2 - z3)\mathbf{AB}}{AB^3} + \frac{z2 - z1}{AB} \right]$$

On vectorial form:

$$\mathbf{F}_{1} = \frac{EI}{ABR\sin\alpha} \left[\frac{\mathbf{A} \cdot \mathbf{AB}}{A^{2}} - \mathbf{B} \right]$$
$$\mathbf{F}_{2} = \frac{EI}{ABR\sin\alpha} \left[-\frac{\mathbf{A} \cdot \mathbf{AB}}{A^{2}} + \frac{\mathbf{B} \cdot \mathbf{AB}}{B^{2}} + \mathbf{B} - \mathbf{A} \right]$$
$$\mathbf{F}_{3} = \frac{EI}{ABR\sin\alpha} \left[-\frac{\mathbf{B} \cdot \mathbf{AB}}{B^{2}} + \mathbf{A} \right]$$

With:

 $\begin{array}{l} {\bf F}_1 \ ({\bf F}_2, \, {\bf F}_3) \text{: force on the node 1 (2, 3),} \\ {\bf AB} \text{: scalar product between the two bar vectors,} \\ {\bf A} \ ({\bf B}) \text{: vector along the first (second) bar element,} \\ {A} \ (B) \text{: length of the first (second) bar element } (m), \\ {x1 \ to \ z3} \text{: the Cartesian coordinates of the three extremities of the two bar elements } (m). \end{array}$

4.3.2 Stiffness matrix

The stiffness matrix is calculated with the derivatives of the force components (F_{x1} to F_{z3}) relative to the positions (x1 to z3). This means that the stiffness matrix has 81 components.

4.4 Drag on cables

Introduction

The drag force on cables is calculated in this model as the contribution of the drag force on each bar elements. The formulation for the drag is based on the assumptions of Morrison, as adapted by Landweber and Richtmeyer (see section 3.3.3 page 47).

The drag amplitudes on bar element used in the model (Figure 4.7) are

$$|\mathbf{F}| = \frac{1}{2}\rho C_d D l_0 \left[|\mathbf{c}| sin(\alpha) \right]^2$$
$$|\mathbf{T}| = f \frac{1}{2}\rho C_d D l_0 \left[|\mathbf{c}| cos(\alpha) \right]^2$$

The directions of the drag are as follows:

$$\frac{\mathbf{F}}{|\mathbf{F}|} = \frac{\mathbf{B} \land (\mathbf{c} \land \mathbf{B})}{|\mathbf{B} \land (\mathbf{c} \land \mathbf{B})|}$$
$$\frac{\mathbf{T}}{|\mathbf{T}|} = \frac{\mathbf{F} \land (\mathbf{c} \land \mathbf{F})}{|\mathbf{F} \land (\mathbf{c} \land \mathbf{F})|}$$

 \mathbf{F} : normal drag (N), following the assumptions of Landweber,

- **T**: tangential drag (N), Richtmeyer hypothesis,
- **B**: bar element vector,
- ρ : density of water (kg/m^3) ,
- C_d : normal drag coefficient,
- f: tangential drag coefficient,
- D: diameter of the bar element (m),
- l_0 : length of the bar element (m),
- c: water velocity relative to the bar element (m/s),
- α : angle between the bar element and the water velocity (radians).

In the equations of drag amplitude, the expressions $|\mathbf{c}|sin(\alpha)$ and $|\mathbf{c}|cos(\alpha)$ are the normal and tangential projections on \mathbf{c} along the bar element vector.

The length of the bar element used in the formulation of drag amplitude could be assessed by $|\mathbf{B}|$. That would mean it takes into account the bar element elongation. Generally speaking, a bar elongation is associated with a diameter D reduction by the Poisson coefficient. Because this Poisson coefficient is not taken into account in the present modelling, the bar element surface is approximated by Dl_0 , where D is the diameter of the bar and l_0 is the unstretched length of the bar element vectors.

All parameters, including the angle α are constant and known for each bar element. Therefore, the drag can be calculated for each bar element. The drag force for a bar element is spread over the two vertices of the element at 1/2 per vertex.

Definitions of the variables

The Cartesian coordinates of the two nodes (1, 2) of the bar element are the following:

$$\mathbf{1} = \begin{vmatrix} x_1 \\ y_1 \\ z_1 \end{vmatrix}$$

Figure 4.7: Normal (F) and tangential (T) forces on a bar element due to the velocity of water (c).

$$\mathbf{2} = egin{bmatrix} x_2 \ y_2 \ z_2 \end{bmatrix}$$

The vector bar element is as follows:

$$\mathbf{B} = \begin{vmatrix} x_2 - x_1 \\ y_2 - y_1 \\ z_2 - z_1 \end{vmatrix}$$

The vector current is

$$\mathbf{c} = \begin{vmatrix} c_x \\ c_y \\ c_z \end{vmatrix}$$

Generally speaking, c_z is null.

The angle between current and ${\cal B}$ is

$$cos(\alpha) = \frac{\mathbf{c}.\mathbf{B}}{|\mathbf{c}||\mathbf{B}|}$$

Evaluation for the stiffness of the normal force

The normal force on B is

$$\mathbf{F} = |\mathbf{F}| rac{\mathbf{B} \wedge (\mathbf{c} \wedge \mathbf{B})}{|\mathbf{B} \wedge (\mathbf{c} \wedge \mathbf{B})|}$$

That means that the x y and z components are:

$$\mathbf{F}_x = |\mathbf{F}| rac{\mathbf{E}_x}{|\mathbf{E}|}$$

$$\mathbf{F}_{y} = |\mathbf{F}| rac{\mathbf{E}_{y}}{|\mathbf{E}|}$$
 $\mathbf{F}_{z} = |\mathbf{F}| rac{\mathbf{E}_{z}}{|\mathbf{E}|}$

With:

$$\mathbf{E} = \mathbf{B} \wedge (\mathbf{c} \wedge \mathbf{B})$$

 $\quad \text{and} \quad$

$$\mathbf{E} = \begin{vmatrix} E_x \\ E_y \\ E_z \end{vmatrix}$$

The x component of the derivative is

$$\mathbf{F}'_x = |\mathbf{F}|' \frac{\mathbf{E}_x}{|\mathbf{E}|} + |\mathbf{F}| \frac{\mathbf{E}'_x |\mathbf{E}| - \mathbf{E}_x |\mathbf{E}|'}{|\mathbf{E}|^2}$$

Which gives for the $x \ y$ and z components:

$$\begin{split} \mathbf{F}'_{x} &= |\mathbf{F}|' \frac{\mathbf{E}_{x}}{|\mathbf{E}|} + \frac{|\mathbf{F}|}{|\mathbf{E}|^{2}} \left\{ \mathbf{E}'_{x} |\mathbf{E}| - \frac{\mathbf{E}_{x}}{|\mathbf{E}|} (\mathbf{E}_{x} \mathbf{E}'_{x} + \mathbf{E}_{y} \mathbf{E}'_{y} + \mathbf{E}_{z} \mathbf{E}'_{z}) \right\} \\ \mathbf{F}'_{y} &= |\mathbf{F}|' \frac{\mathbf{E}_{y}}{|\mathbf{E}|} + \frac{|\mathbf{F}|}{|\mathbf{E}|^{2}} \left\{ \mathbf{E}'_{y} |\mathbf{E}| - \frac{\mathbf{E}_{y}}{|\mathbf{E}|} (\mathbf{E}_{x} \mathbf{E}'_{x} + \mathbf{E}_{y} \mathbf{E}'_{y} + \mathbf{E}_{z} \mathbf{E}'_{z}) \right\} \\ \mathbf{F}'_{z} &= |\mathbf{F}|' \frac{\mathbf{E}_{z}}{|\mathbf{E}|} + \frac{|\mathbf{F}|}{|\mathbf{E}|^{2}} \left\{ \mathbf{E}'_{z} |\mathbf{E}| - \frac{\mathbf{E}_{z}}{|\mathbf{E}|} (\mathbf{E}_{x} \mathbf{E}'_{x} + \mathbf{E}_{y} \mathbf{E}'_{y} + \mathbf{E}_{z} \mathbf{E}'_{z}) \right\} \end{split}$$

For this assessment the derivative of ${\bf E}$ is required:

$$\mathbf{E}' = \mathbf{B}' \wedge (\mathbf{c} \wedge \mathbf{B}) + \mathbf{B} \wedge (\mathbf{c} \wedge \mathbf{B}')$$

This leads to

$$\mathbf{E}' = 2(\mathbf{B}'.\mathbf{B})\mathbf{c} - (\mathbf{B}'.\mathbf{c})\mathbf{B} - (\mathbf{B}.\mathbf{c})\mathbf{B}'$$

which is

$$\begin{aligned} \mathbf{E}'_x &= 2(\mathbf{B}'.\mathbf{B})\mathbf{c}_x - (\mathbf{B}'.\mathbf{c})\mathbf{B}_x - (\mathbf{B}.\mathbf{c})\mathbf{B}'_x\\ \mathbf{E}'_y &= 2(\mathbf{B}'.\mathbf{B})\mathbf{c}_y - (\mathbf{B}'.\mathbf{c})\mathbf{B}_y - (\mathbf{B}.\mathbf{c})\mathbf{B}'_y\\ \mathbf{E}'_z &= 2(\mathbf{B}'.\mathbf{B})\mathbf{c}_z - (\mathbf{B}'.\mathbf{c})\mathbf{B}_z - (\mathbf{B}.\mathbf{c})\mathbf{B}'_z \end{aligned}$$

with

$$\begin{aligned} \mathbf{B}'.\mathbf{B} &= \mathbf{B}_x \mathbf{B}'_x + \mathbf{B}_y \mathbf{B}'_y + \mathbf{B}_z \mathbf{B}'_z \\ \mathbf{B}'.\mathbf{c} &= \mathbf{c}_x \mathbf{B}'_x + \mathbf{c}_y \mathbf{B}'_y + \mathbf{c}_z \mathbf{B}'_z \\ \mathbf{B}.\mathbf{c} &= \mathbf{B}_x \mathbf{c}_x + \mathbf{B}_y \mathbf{c}_y + \mathbf{B}_z \mathbf{c}_z \end{aligned}$$

The derivative of the amplitude of the normal force is

$$|\mathbf{F}|' = \frac{1}{2}\rho C_d D l_0 |\mathbf{c}|^2 \left([\sin(\alpha)]^2 \right)'$$

which is

$$|\mathbf{F}|' = \rho C_d D l_0 |\mathbf{c}|^2 cos(\alpha) sin(\alpha) \alpha'$$

The derivative of α is

$$\alpha' = \frac{-1}{\sqrt{1 - (\frac{\mathbf{c}.\mathbf{B}}{|\mathbf{c}||\mathbf{B}|})^2}} \left[\frac{\mathbf{c}.\mathbf{B}}{|\mathbf{c}||\mathbf{B}|}\right]'$$

That gives

$$\alpha' = \frac{-1}{\sqrt{1 - (\frac{\mathbf{c} \cdot \mathbf{B}}{|\mathbf{c}||\mathbf{B}|})^2}} \left[\frac{\mathbf{c}}{|\mathbf{c}|} \cdot \left(\frac{\mathbf{B}}{|\mathbf{B}|} \right)' \right]$$

The derivative of the bar element direction is

$$\left(\frac{\mathbf{B}}{|\mathbf{B}|}\right)' = \frac{\mathbf{B}'|\mathbf{B}| - \mathbf{B}|\mathbf{B}|'}{|\mathbf{B}|^2}$$

That means that the derivative of α is

$$\alpha' = \frac{-1}{\sqrt{1 - \left(\frac{\mathbf{c}.\mathbf{B}}{|\mathbf{c}||\mathbf{B}|}\right)^2}} \left(\frac{\mathbf{c}}{|\mathbf{c}|}\right) \cdot \left(\frac{\mathbf{B}'|\mathbf{B}| - \mathbf{B}|\mathbf{B}|'}{|\mathbf{B}|^2}\right)$$

or

$$\alpha' = \frac{-1}{|\mathbf{B}|^2 |\mathbf{c}| \sin \alpha} \left\{ |\mathbf{B}| \left[c_x \mathbf{B}'_x + c_y \mathbf{B}'_y + c_z \mathbf{B}'_z \right] - (\mathbf{c}.\mathbf{B}) |\mathbf{B}|' \right\}$$

In this case \mathbf{B}'_x is the component along x of \mathbf{B}' . The derivative of vector \mathbf{B} is

$$\mathbf{B'} = egin{bmatrix} \mathbf{B'}_x \ \mathbf{B'}_y \ \mathbf{B'}_z \ \mathbf{B'}_z \end{bmatrix}$$

which is

$$\frac{\partial B_x}{\partial x_1} = \frac{\partial B_y}{\partial y_1} = \frac{\partial B_z}{\partial z_1} = -1$$
$$\frac{\partial B_x}{\partial x_2} = \frac{\partial B_y}{\partial y_2} = \frac{\partial B_z}{\partial z_2} = 1$$
$$\frac{\partial B_x}{\partial y_1} = \frac{\partial B_x}{\partial y_2} = \frac{\partial B_x}{\partial z_1} = \frac{\partial B_x}{\partial z_2} = 0$$
$$\frac{\partial B_y}{\partial z_1} = \frac{\partial B_y}{\partial z_2} = \frac{\partial B_y}{\partial x_1} = \frac{\partial B_y}{\partial x_2} = 0$$
$$\frac{\partial B_z}{\partial x_1} = \frac{\partial B_z}{\partial x_2} = \frac{\partial B_z}{\partial y_1} = \frac{\partial B_z}{\partial y_2} = 0$$

4.4. DRAG ON CABLES

On vector form and for the nine coordinates of the triangular element it is

$$\frac{\partial \mathbf{B}}{\partial x_1} = \begin{vmatrix} -1\\ 0\\ 0\\ 0 \end{vmatrix}$$
$$\frac{\partial \mathbf{B}}{\partial y_1} = \begin{vmatrix} 0\\ -1\\ 0\\ 0\\ -1 \end{vmatrix}$$
$$\frac{\partial \mathbf{B}}{\partial z_1} = \begin{vmatrix} 0\\ 0\\ -1\\ 0\\ 0\\ -1 \end{vmatrix}$$
$$\frac{\partial \mathbf{B}}{\partial x_2} = \begin{vmatrix} 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ \frac{\partial \mathbf{B}}{\partial y_2} = \begin{vmatrix} 0\\ 1\\ 0\\ 0\\ 1 \end{vmatrix}$$
$$\frac{\partial \mathbf{B}}{\partial z_2} = \begin{vmatrix} 0\\ 0\\ 1\\ 0\\ 1 \end{vmatrix}$$

The derivative of the norm of vector ${\bf B}$ is

$$|\mathbf{B}|' = \frac{B_x B_x' + B_y B_y' + B_z B_z'}{|\mathbf{B}|}$$

Which gives for the nine coordinates of the triangular element:

$$\frac{\partial |\mathbf{B}|}{\partial x_1} = \frac{-B_x}{|\mathbf{B}|}$$
$$\frac{\partial |\mathbf{B}|}{\partial y_1} = \frac{-B_y}{|\mathbf{B}|}$$
$$\frac{\partial |\mathbf{B}|}{\partial z_1} = \frac{-B_z}{|\mathbf{B}|}$$
$$\frac{\partial |\mathbf{B}|}{\partial x_2} = \frac{B_x}{|\mathbf{B}|}$$
$$\frac{\partial |\mathbf{B}|}{\partial y_2} = \frac{B_y}{|\mathbf{B}|}$$
$$\frac{\partial |\mathbf{B}|}{\partial z_2} = \frac{B_z}{|\mathbf{B}|}$$

Evaluation for the stiffness of the tangential force

The tangential force on the bar element is

$$\mathbf{T} = |\mathbf{T}| \frac{\mathbf{F} \wedge (\mathbf{c} \wedge \mathbf{F})}{|\mathbf{F} \wedge (\mathbf{c} \wedge \mathbf{F})|}$$

Following the definition of ${\bf F}:$

$$\mathbf{T} = |\mathbf{T}| \frac{[\mathbf{B} \land (\mathbf{c} \land \mathbf{B})] \land \{\mathbf{c} \land [\mathbf{B} \land (\mathbf{c} \land \mathbf{B})]\}}{|[\mathbf{B} \land (\mathbf{c} \land \mathbf{B})] \land \{\mathbf{c} \land [\mathbf{B} \land (\mathbf{c} \land \mathbf{B})]\}|}$$

It follows:

$$\mathbf{T} = |\mathbf{T}| \frac{[(\mathbf{B}.\mathbf{B})(\mathbf{c}.\mathbf{c}) - (\mathbf{B}.\mathbf{c})^2](\mathbf{B}.\mathbf{c})\mathbf{B}}{|[(\mathbf{B}.\mathbf{B})(\mathbf{c}.\mathbf{c}) - (\mathbf{B}.\mathbf{c})^2](\mathbf{B}.\mathbf{c})\mathbf{B}|}$$

or

$$\mathbf{T} = |\mathbf{T}| \frac{[|\mathbf{B}|^2 |\mathbf{c}|^2 - (|\mathbf{B}| |\mathbf{c}| cos\alpha)^2] |\mathbf{B}| |\mathbf{c}| cos\alpha \mathbf{B}}{[|\mathbf{B}|^2 |\mathbf{c}|^2 - (|\mathbf{B}| |\mathbf{c}| cos\alpha)^2] |\mathbf{B}| |\mathbf{c}| cos\alpha \mathbf{B}|}$$

 $\quad \text{and} \quad$

$$\mathbf{T} = |\mathbf{T}| \frac{\cos \alpha \mathbf{B}}{|\cos \alpha||\mathbf{B}|}$$

The x y and z components are:

$$\mathbf{T}_{x} = |\mathbf{T}| \frac{\cos \alpha \mathbf{B}_{x}}{|\cos \alpha||\mathbf{B}|}$$
$$\mathbf{T}_{y} = |\mathbf{T}| \frac{\cos \alpha \mathbf{B}_{y}}{|\cos \alpha||\mathbf{B}|}$$
$$\mathbf{T}_{z} = |\mathbf{T}| \frac{\cos \alpha \mathbf{B}_{z}}{|\cos \alpha||\mathbf{B}|}$$

The derivative of \mathbf{T}_x is:

$$\mathbf{T}'_{x} = |\mathbf{T}|' \frac{\cos \alpha \mathbf{B}_{x}}{|\cos \alpha||\mathbf{B}|} + |\mathbf{T}| \frac{(\cos \alpha \mathbf{B}_{x})'|\cos \alpha||\mathbf{B}| - \cos \alpha \mathbf{B}_{x}(|\cos \alpha||\mathbf{B}|)'}{(|\cos \alpha||\mathbf{B}|)^{2}}$$

$$\mathbf{T}'_{x} = |\mathbf{T}|' \frac{\cos \alpha \mathbf{B}_{x}}{|\cos \alpha||\mathbf{B}|} \\ + \frac{|\mathbf{T}|}{|\cos \alpha||\mathbf{B}|} (\cos \alpha \mathbf{B}'_{x} - \sin \alpha \alpha' \mathbf{B}_{x}) \\ - \frac{|\mathbf{T}| \cos \alpha \mathbf{B}_{x}}{(|\cos \alpha||\mathbf{B}|)^{2}} \left[|\cos \alpha| \frac{\mathbf{B}_{x}\mathbf{B}'_{x} + \mathbf{B}_{y}\mathbf{B}'_{y} + \mathbf{B}_{z}\mathbf{B}'_{z}}{|\mathbf{B}|} - \frac{\cos \alpha}{|\cos \alpha|} \sin \alpha \alpha' |\mathbf{B}| \right]$$

$$\mathbf{T}'_{x} = |\mathbf{T}|' \frac{\mathbf{T}_{x}}{|\mathbf{T}|} + \frac{|\mathbf{T}|}{|\cos\alpha||\mathbf{B}|} (\cos\alpha\mathbf{B}'_{x} - \sin\alpha\alpha'\mathbf{B}_{x}) - \frac{\mathbf{T}_{x}}{|\cos\alpha||\mathbf{B}|} \left[|\cos\alpha| \frac{\mathbf{B}_{x}\mathbf{B}'_{x} + \mathbf{B}_{y}\mathbf{B}'_{y} + \mathbf{B}_{z}\mathbf{B}'_{z}}{|\mathbf{B}|} - \frac{\cos\alpha}{|\cos\alpha|} \sin\alpha\alpha'|\mathbf{B}| \right]$$
$$\mathbf{T}'_{y} = |\mathbf{T}|' \frac{\mathbf{T}_{y}}{|\mathbf{T}|} + \frac{|\mathbf{T}|}{|\cos\alpha||\mathbf{B}|} (\cos\alpha\mathbf{B}'_{y} - \sin\alpha\alpha'\mathbf{B}_{y}) - \frac{\mathbf{T}_{y}}{|\cos\alpha||\mathbf{B}|} \left[|\cos\alpha| \frac{\mathbf{B}_{x}\mathbf{B}'_{x} + \mathbf{B}_{y}\mathbf{B}'_{y} + \mathbf{B}_{z}\mathbf{B}'_{z}}{|\mathbf{B}|} - \frac{\cos\alpha}{|\cos\alpha|} \sin\alpha\alpha'|\mathbf{B}| \right]$$

$$\mathbf{T}'_{z} = |\mathbf{T}|' \frac{\mathbf{T}_{z}}{|\mathbf{T}|} + \frac{|\mathbf{T}|}{|\cos\alpha||\mathbf{B}|} (\cos\alpha\mathbf{B}'_{z} - \sin\alpha\alpha'\mathbf{B}_{z}) - \frac{\mathbf{T}_{z}}{|\cos\alpha||\mathbf{B}|} \left[|\cos\alpha| \frac{\mathbf{B}_{x}\mathbf{B}'_{x} + \mathbf{B}_{y}\mathbf{B}'_{y} + \mathbf{B}_{z}\mathbf{B}'_{z}}{|\mathbf{B}|} - \frac{\cos\alpha}{|\cos\alpha|}\sin\alpha\alpha'|\mathbf{B}| \right]$$

The derivative of the amplitude of the tangential force is

$$|\mathbf{T}|' = f \frac{1}{2} \rho C_d D l_0 |\mathbf{c}|^2 \left([\cos(\alpha)]^2 \right)' \frac{d}{2}$$

which is

$$|\mathbf{T}|' = -\frac{d}{2} f \rho C_d D l_0 |\mathbf{c}|^2 cos(\alpha) sin(\alpha) \alpha'$$

Chapter 5

The node element

5.1 Principle

The contact of a marine structure with the sea bed has to be taken into account. It is of great importance for structures such as chains lying on the sea-bed or bottom trawls.

In the following sections a few forces related to this contact are described.

5.2 Contact on bottom

In this model, the main hypothesis for these contact forces is that the bottom is elastic. That means that if a node is in contact with the bottom, the force reaction (N) is equal to the product of the node depth (m) in the soil by the soil stiffness (N/m).

5.2.1 Force vector

The vertical force on a node due to its potential contact with the bottom is

$$ifz < Z_b$$
 $F_z = B_k(Z_b - z)$
 $ifz \ge Z_b$ $F_z = 0$

With:

 F_z : the vertical force on the node (N), B_k : the bottom stiffness (N/m),

 Z_b : the vertical position of the bottom (m),

z: the vertical position of the node (m).

5.2.2 Stiffness matrix

$$\begin{aligned} ifz < Z_b & -\frac{\partial F_z}{\partial z} = B_k \\ ifz \ge Z_b & -\frac{\partial F_z}{\partial z} = 0 \end{aligned}$$

5.3 Drag on bottom

Contact of a node with the bottom could lead to a wearing force. This force is taken into account when there is a movement of the structure on the bottom. This wearing depends on the depth on which the node digs the bottom, on the bottom stiffness, and on the node speed displacement on the bottom.

5.3.1 Force vector

As mentioned earlier (section 5.2, page 89), the vertical force on a node due to its contact ($z < Z_b$) to the bottom is:

$$F_c = B_k (Z_b - z)$$

With:

 F_c : the vertical force on the node (N), B_k : the bottom stiffness (N/m), Z_b : the vertical position of the bottom (m), z: the vertical position of the node (m).

The drag force on the bottom has been modelled as a function of the displacement speed of the node on the bottom. Figure 5.1 shows this relation.

Figure 5.1: Example of amplitude of wearing force $|\mathbf{F}|$ depending on the node displacement speed on the bottom $|\mathbf{V}|$.

90

$$\begin{split} if|\mathbf{V}| < V_l \quad |\mathbf{F}| = & F_c B_f \frac{|\mathbf{V}|}{V_l} \\ if|\mathbf{V}| \ge V_l \quad |\mathbf{F}| = & F_c B_f \end{split}$$

With:

$$\mathbf{V} = \begin{vmatrix} V_x \\ V_y \\ V_z \end{vmatrix}$$

The components of speed are calculated as follows:

$$V_x = \frac{x - x_p}{\Delta t}$$
$$V_y = \frac{y - y_p}{\Delta t}$$
$$V_z = \frac{z - z_p}{\Delta t}$$

 V_x (V_y, V_z) : component of the speed of the node along the x (y, z) axis (m/s), x (y, z): coordinate of the node along the x (y, z) axis (m) calculated at time t, x_p (y_p, z_p) : previous coordinate of the node along the x (y, z) axis (m) calculated at time $t - \Delta t$.

Two cases are defined: a high-speed case $(|\mathbf{V}| \geq V_l)$ and a low-speed case $(|\mathbf{V}| < V_l)$. The wearing force is calculated in the two cases such as there is continuity between the two cases (at $|\mathbf{V}| = V_l$).

High-speed

In this case, $|\mathbf{V}| \geq V_l$.

That means that the components of this force are the following:

$$F_x = -F_c B_f \frac{V_x}{|\mathbf{V}|}$$
$$F_y = -F_c B_f \frac{V_y}{|\mathbf{V}|}$$
$$F_z = -F_c B_f \frac{V_z}{|\mathbf{V}|}$$

Low-speed

In this case, $|\mathbf{V}| < V_l$.

That means that the components of this force are the following:

$$\begin{split} F_x &= -F_c B_f \frac{V_x}{V_l} \\ F_y &= -F_c B_f \frac{V_y}{V_l} \\ F_z &= -F_c B_f \frac{V_z}{V_l} \end{split}$$

5.3.2 Stiffness matrix

High-speed

$$\begin{split} \frac{\partial F_x}{\partial x} &= -\frac{F_c B_f}{|\mathbf{V}|^2} \frac{\partial V_x}{\partial x} \left[|\mathbf{V}| - \frac{V_x^2}{|\mathbf{V}|} \right] \\ \frac{\partial F_x}{\partial y} &= -\frac{F_c B_f}{|\mathbf{V}|^2} \frac{\partial V_y}{\partial y} \left[-\frac{V_x V_y}{|\mathbf{V}|} \right] \\ \frac{\partial F_x}{\partial z} &= B_k B_f \frac{V_x}{|\mathbf{V}|} - \frac{F_c B_f}{|\mathbf{V}|^2} \left[-\frac{V_x V_z}{|\mathbf{V}|} \frac{\partial V_z}{\partial z} \right] \\ \frac{\partial F_y}{\partial x} &= \frac{F_c B_f}{|\mathbf{V}|^2} \left[\frac{V_x V_y}{|\mathbf{V}|} \frac{\partial V_x}{\partial x} \right] \\ \frac{\partial F_y}{\partial z} &= -\frac{F_c B_f}{|\mathbf{V}|^2} \frac{\partial V_y}{\partial y} \left[|\mathbf{V}| - \frac{V_y^2}{|\mathbf{V}|} \right] \\ \frac{\partial F_y}{\partial z} &= B_k B_f \frac{V_y}{|\mathbf{V}|} - \frac{F_c B_f}{|\mathbf{V}|^2} \left[-\frac{V_x V_z}{|\mathbf{V}|} \frac{\partial V_z}{\partial z} \right] \\ \frac{\partial F_z}{\partial z} &= B_k B_f \frac{V_y}{|\mathbf{V}|} - \frac{F_c B_f}{|\mathbf{V}|^2} \left[\frac{V_x V_z}{|\mathbf{V}|} \frac{\partial V_x}{\partial x} \right] \\ \frac{\partial F_z}{\partial z} &= \frac{F_c B_f}{|\mathbf{V}|^2} \left[\frac{V_x V_z}{|\mathbf{V}|} \frac{\partial V_y}{\partial y} \right] \\ \frac{\partial F_z}{\partial z} &= B_k B_f \frac{V_z}{|\mathbf{V}|} - \frac{F_c B_f}{|\mathbf{V}|^2} \left[\frac{\partial V_z}{|\mathbf{V}|} \frac{\partial V_y}{\partial y} \right] \end{split}$$

With:

$$\begin{split} \frac{\partial V_x}{\partial x} &= \frac{1}{\Delta t} \\ \frac{\partial V_y}{\partial y} &= \frac{1}{\Delta t} \\ \frac{\partial V_z}{\partial z} &= \frac{1}{\Delta t} \end{split}$$

The stiffness matrix becomes:

$$K = -\frac{B_f F_c}{|\mathbf{V}|^2 \Delta t} \begin{pmatrix} \frac{V_x^2}{|\mathbf{V}|} - |\mathbf{V}| & \frac{V_x V_y}{|\mathbf{V}|} & \frac{V_x V_z}{|\mathbf{V}|} \\ \frac{V_x V_y}{|\mathbf{V}|} & \frac{V_y^2}{|\mathbf{V}|} - |\mathbf{V}| & \frac{V_y V_z}{|\mathbf{V}|} \\ \frac{V_x V_z}{|\mathbf{V}|} & \frac{V_y V_z}{|\mathbf{V}|} & \frac{V_z^2}{|\mathbf{V}|} - |\mathbf{V}| \end{pmatrix} - \frac{B_f B_k}{|\mathbf{V}|} \begin{pmatrix} 0 & 0 & V_x \\ 0 & 0 & V_y \\ 0 & 0 & V_z \end{pmatrix}$$

Low-speed

$$\begin{split} \frac{\partial F_x}{\partial x} &= -\frac{F_c B_f}{V_l} \frac{\partial V_x}{\partial x} \\ & \frac{\partial F_x}{\partial y} = 0 \\ \frac{\partial F_x}{\partial z} &= B_k B_f \frac{V_x}{V_l} \\ & \frac{\partial F_y}{\partial x} = 0 \\ \frac{\partial F_y}{\partial y} &= -\frac{F_c B_f}{V_l} \frac{\partial V_y}{\partial y} \\ & \frac{\partial F_y}{\partial z} &= B_k B_f \frac{V_y}{V_l} \\ & \frac{\partial F_z}{\partial x} = 0 \\ & \frac{\partial F_z}{\partial y} = 0 \\ \\ \frac{\partial F_z}{\partial z} &= B_k B_f \frac{V_z}{V_l} - \frac{F_c B_f}{V_l} \frac{\partial V_z}{\partial z} \end{split}$$

The stiffness matrix becomes:

$$K = \frac{B_f}{V_l} \begin{pmatrix} \frac{F_c}{\Delta t} & 0 & -B_k V_x \\ 0 & \frac{F_c}{\Delta t} & -B_k V_y \\ 0 & 0 & -B_k V_z + \frac{F_c}{\Delta t} \end{pmatrix}$$

Chapter 6

Validation

Several simulations are presented here. They are compared with flume tank tests, sea trials, and other models.

6.1 Tractrix

The shape of the meridian of a cylinder of netting of inextensible twines held between two circular rings is a tractrix.

In the case of a cylinder of stretched netting of 100 meshes around, 50 meshes along, a radius of 1m at one extremity and 0.048599m at the other, and a mesh side of 0.05m, the shape is as displayed in Figure 6.1 (O'Neill and Priour, 2009).

The accuracy of the model depends on the number of nodes used (Table 6.1). The model uses 32 to 662 nodes and two planes of symmetry.

Figure 6.1: Cylinder of inextensible netting held between two circular rings.

Table 6.1: Tractrix shape and accuracy of the model, where x and y are the analytical solution; x is along the axis and y is radial. The accuracy on y depends on the number of nodes in the model (from 32 to 662).

x (m)	y (m)	662	298	84	32
0	1				
0.403501	0.739032	0.02%	0.22%	1.4%	-1.1%
0.844094	0.546168	0.00%	0.19%	1.2%	-2.7%
1.303628	0.403636	-0.01%	0.14%	1.0%	-1.8%
1.773173	0.2983	0.00%	0.19%	1.5%	-2.3%
2.248093	0.220453	-0.02%	0.17%	1.3%	-2.4%
2.725923	0.162922	-0.03%	0.15%	1.0%	-3.6%
3.205334	0.120404	-0.07%	0.18%	1.0%	-2.8%
3.685607	0.088983	-0.11%	0.17%	0.6%	-3.2%
4.166349	0.065761	-0.15%	0.16%	0.2%	-1.9%
4.647348	0.048599				

96

6.2 Diamond mesh netting stretched by its weight

This check is done by comparing the results of the model based on triangular elements with a model where each twine is modelled by an elastic bar. This comparison is taken from Priour (1999).

The mesh panel is square and consists of 1600 meshes. The elongation rigidity (EA) of the twines is 10000N, their diameter is 0.01m, the side of the mesh is 1.2m, the length of the upper edge is 32m, and the density of the net is $2000kg/m^3$.

The model uses 1050 triangular elements and 512 nodes with a vertical plane of symmetry (Figures 6.2 and 6.3b). The comparison is made with a reference model where each side of mesh (twine vector) is modelled with an elastic bar (Figure 6.3a). This reference model uses 3136 bars and 1625 nodes with a plane of symmetry. The forms calculated by the two models are quite similar (Figure 6.3).

The forces involved here are the netting weight and the twine tension (sections 3.3.9 page 67 and 3.3 page 37).

Figure 6.2: Calculation of the shape of a net held by its top border. The initial shape of the model is unbalanced (a) and the final one is balanced (b). Only the triangular elements are represented.

Figure 6.3: Equilibrium of a net held by its top edge and stretched by its own weight: (a) model where each twine is modelled as an elastic bar; (b) model using triangular elements, with only the twines drawn.

6.3 Hexagonal mesh net held vertically in the current

The results of the model using triangular elements for netting with hexagonal meshes are compared with those of a model using bar elements for each twine. The mesh panel is square and consists of 18 by 33 meshes and 3564 twines. The elongation rigidity of the twines is 3000N and 0.0003N in compression. The diameter of the twines is 1mm, and their length is 19mm. The length of each edge is 1m. The density of the material is considered equal to that of sea water $(1025kg/m^3)$. The net is held by its four edges perpendicular to a current of 1m/s of sea water.

The first model uses 924 triangular elements and 495 nodes (Figures 6.4a and 6.4b), whereas the second model uses 3564 bars and 2446 nodes (Figure 6.4c).

The results of the two models are similar. The maximum displacement is 0.182m for the first model and 0.184m for the second. The drag force is 54.10N for the first and 54.04N for the second.

Convergence is obtained in 29 iterations with the first model compared with 296 iterations for the second model. This acceleration is related to the reduction in the number of nodes in the model using triangular elements.

This comparison is based on Priour (2002).

Figure 6.4: Equilibrium of a net held by its four edges in a current perpendicular: (a) the twines in the model using triangular elements; (b) the triangular elements; (c) the twines in the model using bar elements. The shapes are similar.

6.4 Hydrostatic pressure

The results of the model using triangular elements are compared with measurements made by O'Neill and O'Donoghue (1997). These measures involve a net bag partially filled with water bags (Figure 6.5). The pressure from the weight of the bags is implemented as in section 3.3.6 (page 63), but in this case the pressure is modelled as a hydrostatic pressure:

$$p = \rho g h$$

The model uses 742 nodes, 1360 triangular elements, one bar for closing the netting at the bottom, and two symmetry planes. This comparison comes from Priour (2005).

Figure 6.5: Bag of netting with 26.5kg of water. Comparison between measurements (a) and the model using triangular elements (b). Only twines are shown in (b)

100

6.5 Cod-end with catch in the current

A cod-end is the backmost part of a trawl where the catch of fish builds up. The results of the model are compared with measurements made in test tank on cod-ends partially filled with water (Anon. 1999). The pressure of the catch is implemented here as follows (see section 3.3.6, page 63):

$$p = \frac{1}{2}\rho C_d v^2$$

p: catch pressure on the net (Pa),

 ρ : density of water (kg/m^3) ,

 C_d : drag coefficient (1.4),

v: current amplitude (m/s).

The distance between the front of the catch and the extremity of the cod-end is inserted into the model as data because this distance was measured during the tests. Figure 6.6 shows the model output (net) and the flume tank measurements (cross). The comparison shows that the model gives a pretty good description of the cod-end with the catch.

Figure 6.6: Comparison of flume tank tests (cross) and the numerical model outputs (mesh) for a scale (1/3) model of North Sea cod-end with 300kg of catch.

6.6 Full cod-end

A long and full cod-end subject to constant internal pressure presents a maximal diameter. This maximal diameter depends on the number of meshes around N and the mesh side m by the following analytical equation (O'Neill and Priour 2009):

$$D_{max} = 4\frac{Nm}{\pi\sqrt{6}}$$

In the case of a cod-end close at one extremity of 100 meshes around, 100 meshes along (N), and a mesh side of 0.05m (m), the shape is as displayed in Figure 6.7.

The accuracy of the model on the maximal diameter is 0.015%.

Figure 6.7: Cod-end of netting subject to constant internal pressure.

6.7. BOTTOM TRAWL

6.7 Bottom trawl

Several series of measurements on a bottom trawl were carried out during a sea trial on a French vessel. The results of the numerical model were compared with these measurements (Priour 2012; Figure 6.8, Table 6.2).

The vessel was equipped with measurement systems suitable for trawling. Several measurements were carried out:

- the position of the doors (immersion and distance),
- the distance between the headline and the bottom,
- the speed over ground and speed relative to the water,
- the warps and bridles tension.

Figure 6.8: Shape of the bottom trawl assessed by the model. Only 1 twine on 5 is drawn.

	$\operatorname{Mean-SD}$	$\mathrm{Mean}{+}\mathrm{SD}$	Simulation
Warp tension (kg)	1966	3121	2300
Top bridle tension (kg)	864	1370	980
Bottom bridle tension (kg)	609	972	830
Vertical opening (m)	3.5	4.3	3.4

Table 6.2: Differences between tests at sea and simulation. SD: standard deviation.

Measurements on the trawl are highly variable. The results of model calculation are generally close to measured quantities.

6.8 Cubic fish cage

Tests were carried out on models of a fish cage in the flume tank of Boulogne/mer (Répécaud and Rodier 1993). The cage consisted of 4 side panels of 23 horizontal by 26 vertical meshes and a bottom panel of 23 by 23 meshes. The net had a mesh side of 35mm and a twine diameter of 2.2mm. The four bottom corners were tightened with 3kg of lead sinkers. The size of the cage top was 1m by 1m. The water speed was 0.5m/s. Figure 6.9 compares the flume tank test and the simulation.

Figure 6.9: Qualitative comparison between the deformation of a cubic cage in a flume tank (a) and simulation (b).

104

6.9 Bending of cable

The model of bending of cables (section 4.3, page 75) is compared with a beam deformation (Figure 6.10) in the thin beam theory. In this case the deflection is well known. In case of a cantilever the analytical equation of the deflection is as follows:

$$y = \frac{-Wl^4}{8EI}$$

y: the vertical deflection of the free extremity of the cantilever (m),

l: the length of the cantilever (m),

w: the linear weight of the cantilever (N/m),

EI: the bending rigidity $(N.m^2)$.

In case of a beam $1m \log(l)$, with a density of iron $(7800kg/m^3)$, a diameter of 2cm, and a rigidity (EI) of $164.93N.m^2$, the deflection is 18.2mm.

Table 6.3 and Figure 6.11 show the vertical deflection of the beam calculated with the model in function of bar element number. The model is shown to be valid. The larger the number of bar elements, the smaller the error.

Table 6.3: Vertical deflection of the beam deflection calculated with the model in function of bar elements number and error relative to the analytical deflection (18.2mm)

Number of bars	5	8	10	12	16	20	30	40
Simulated deflection (mm)	18.9	18.5	18.4	18.3	18.3	18.3	18.2	18.2
m Error~%	4.0	1.5	0.97	0.67	0.36	0.23	0.082	0.039

Figure 6.10: Vertical deflection of a beam calculated with the model. The beam is fixed on the left and free to bend on its own weight on the right. The conditions are the same as in the text except for the bending rigidity, which is $(EI = 16.493N.m^2)$, ten times less than the case of Table 6.3 and Figure 6.11 to highlight the deformation.

Figure 6.11: Error of the model relative to the analytical deflection in function of the number of bar elements.

Chapter 7

References

Anon., 1999. PREMECS FAIR Program CT96 1555, Final report – 1st December 1996 – 31st November 1999

Bessonneau, J.S., and Marichal, D., 1998. Study of the dynamics of submerged supple nets. Ocean Engineering 27 (7).

Chang S.Y., 2004. Studies of Newmark method for solving non linear systems: (I) Basic analysis. Journal of the Chinese institute of engineers, Vol.27, No.5, pp. 651-662.

Deuflhard, P., 2004. Newton methods for non-linear problems, Affine invariance and adaptive algorithms. Springer series in computational mathematics. ISSN 0 179-3632. ISBN 3-540-21099-7.

Desai, C.S., and Abel, J.F., 1972. Introduction to the finite element method: a numerical method for engineering analysis, Van Nostrand Reinhold.

Ferro, R.S.T., 1988. Computer simulation of trawl gear shape and loading. In: Proceedings of Word Symposium on Fishing Gear and Fishing Vessel Design. Marine Institute, Saint John's, pp. 259–262.

Hallam, M.G., Heaf, N.J., and Wootton, L.R., 1977. Dynamics of marine structures, CIRIA Underwater Engineering Group, Londres.

Landweber, L., and Protter, M.H., 1947. The shape and tension of a light flexible cable in a uniform current. Journal of applied mechanics. June 1947. pp. 121-126.

Le Dret, H., Priour, D., Lewandowski, R., and Chagneau, F., 2004. Numerical simulation of a cod end net. Part 1. Equilibrium in a uniform flow. Journal of Elasticity 76 (2), pp. 139–162.

Lee, C.-W., Lee, J.-H., Cha, B.-J., Kim, H.-Y., and Lee, J.-H., 2005. Physical modeling for underwater flexible systems dynamic simulation. Ocean Engineering 32, pp. 331–347.

Niedzwiedz, G., and Hopp, M., 1998. Rope and net calculations applied to problems in marine engineering and fisheries research. Archive of Fishery and Marine Research 46, pp. 125–138.

O'Neill, F.G., 2004. The influence of bending stiffness on the deformation of axi-symmetric networks, Proceedings of OMAE'04, June 20-25, 2004, Vancouver Canada.

O'Neill, F.G., and O'Donoghue, T., 1997. The fluid dynamic loading on catch and the geometry of trawl cod-ends. Proceedings of the Royal Society of London, Series A: Mathematics and Physical Sciences 1997;453: pp. 1631-1648.

O'Neill, F.G., and Priour, D., 2009. Comparison and validation of two models of netting deformation. Journal of Applied Mechanics, 76(5), pp. 1-7.

O'Neill, F.G., and Xu, L., 1994. Twine flexural rigidity and mesh resistance to opening, ICES CM/B:31.

Priour, D., 1999. Calculation of net shapes by the finite element method with triangular elements. Commun. Numer. Meth. Engng, 15, pp. 755-763.

Priour, D., 2002. Analysis of nets with hexagonal mesh using triangular elements, Int. J. Numer. Meth. Engng., 56, pp. 1721-1733. DOI: 10.1002/nme.635.

Priour, D., 2005. FEM modelling of flexible structures made of cables, bars and nets. Proceedings of the IMAM Conference: Guedes Soares, Garbatov and Fonseca, eds. Maritime Transportation and Exploitation of Ocean and Coastal Resources. London: Taylor and Francis Group, pp. 1285-1292.

Priour, D., 2006. Twines equilibrium in a finite element dedicated to hexagonal mesh netting (ESAIM: PROCEEDINGS, October 2007, Vol. 22, pp. 140-149).

Priour, D., 2012. Rapport final du projet EFFICHALUT, Rapport Ifremer/DCB/RDT/HO/R12-001.

Répécaud, M., and Rodier, P., 1993. Note interne IFREMER, Compte rendu d'essais: Cages pour l'élevage du poisson en mer, DITI/NPA/93.020.

Richtmyer, R.D., 1941. Design and operation of mark IV magnetic mine sweeping gear. Bureau of ships scientific group report No12. January 1941. Rivlin, R.S., 1955. Plane Strain of a Net Formed by Inextensible Cords, Indiana Univ. Math. J., pp. 951-974.

Tsukrov, I., Eroshkin, O., Fredriksson, D., Swift, M.R., and Celikkol, B., 2003. Finite element modeling of net panels using a consistent net element. Ocean Engineering 30 (February (2)), pp. 251-270.

Zienkiewicz, O.C., and Taylor, R.L., 2000. Finite Element Method (5th Edition), Volume 1 - The Basis, Elsevier.

Scottish seine net selectivity and catch comparison data

comparison data Scottish seine net selectivity and catch

Barry O'Neill

Sea trials

- Harmony NAFC
- 110mm codend,
- 110mm codend with 90mm smp
- 120mm codend
- T compared with 100mm codend with 90 smp fitted @ 6 - 9m
- Harmony FRS
- 100mm codend
- T 100mm codend with 90mm smp @ 3 - 6m
- 100mm codend with 90mm smp @ 9 12m
- L Compared with a 40mm codend
- Boy Andrew
- 100mm codend with a 90 smp fitted 9 12m
- I Compared with a 100mm codend. 100mm codend with a 90 smp fitted 7 – 10m

l

Analysis

- Most studies of seine net selectivity use the alternate shot method
- this allows trials to resemble commercial practices as much as possible
- the temporal and spatial difference between shots can
- lead to high variability,
- data which does not conform to any standard selection curve and/or
- selection parameters and the 'split' parameter data for which there is insufficient information to estimate both the
- the test and control gears curves to seine net data and assess the relative catch rate of Hence, it has often been difficult to fit parametric selection

Analysis

- mixed model smoothing methodology of Fryer et al. (2003) to estimate the catch rate
- This methodology makes no prior assumptions on the nature model of Millar (1992). of the relative catch rates and is underpinned by the SELECT
- Haddock and whiting

relative catch rate

Harmony FRS

marinescotland

relative catch rate

Boy Andrew

Comparison with trawl data

- Harmony FRS seine net trials 40mm control codend
- Meeting report of April/May 2003. trawl selectivity model of Madsen and Ferro in the EU Expert
- commercial and 2 research vessel cruises haddock selectivity data from 512 selectivity hauls on 8

marinescotland

Comparison with trawl data

Comparison with trawl data

Whiting 100mm codend

Comparison with trawl data

Comparison with trawl data

In summary

- mixed model smoothing methodology of Fryer et al. (2003) to estimate the catch rate
- appear to be the same seine and trawl gears - influence of mesh size and smps No evidence of a difference between the selectivity of

marinescotland

Appendix A9

A comparative analysis of legislated and modified Baltic Sea trawlcodends for simultaneously improving the size selection ofcod (Gadus morhua) and plaice (Pleuronectes platessa)

selection ofcod (Gadus morhua) and plaice Sea trawlcodends for simultaneously improving the size (Pleuronectes platessa)Harald A comparative analysis of legislated and modified Baltic

Harald Wienbeck Bent Herrmann Jordan P. Feekings Daniel Stepputtis Waldemar Moderhak

WGFTB New Bedford 07.05.2014

Assessment of different modified codends

for their utility in

platessa) in the Baltic Sea cod (Gadus morhua) and plaice (Pleuronectes simultaneously improving the size selectivity of

Page 3

codends

Page 4

WGFTFB 07.05.2014

THÜNEN

•• THÜNEN

THÜNEN

WGFTFB 07.05.2014

cod

A: BACOMA SS120DD105 vs. T90 SD120

ч

B: BACOMA SS120DD105 vs. BACOMA SS120SD130

cod

THÜNEN

plaice

• THÜNEN

WGFTFB 07.05.2014

plaice

plaice

THÜNEN

WGFTFB 07.05.2014

plaice

Warum funktioniert das Bacoma?

Warum funktioniert das Bacoma?

Thünen-Institut für Ostseefischerei

Dr. Daniel Stepputtis, Dr. Bent Herrmann (DK) Harald Wienbeck Junita Karlsen (DK)

Rendsburg 30.01.2014

Quadratmaschen

Bacoma

belly

Appendix A11

German pictures for roundfish escapement through square meshes of codends

FISKE MED SNURREVAD

Fangstprinsippet (fly-shooting)

TAU/ARMER: Det brukes utelukkende kombinasjonstau av polypropylen (syntetfiber) med kjerner av stål i norsk fiske. Dimensjonene varierer fra 20-44 mm (diam.), med de tyngste tauene nærmest nota (vekt på opp mot 1.5 kg/m).

> Ø 44 = 320 kg/kveil Ø 42 = 280 kg/kveil Ø 40 = 260 kg/kveil Ø 36 = 225 kg/kveil Ø 28 = 150 kg/kveil

- * 1 kveil tau = 120 favner (220 m)
- På 40 50 fv. dyp brukes 4-5 kveiler tau,
- på 150-200 fv. brukes 8-10 kveiler.

Meydam	combination	rope - Break	ing load
Diameter	kg / 220m	Load / kg	Max length
20mm	90	6900	
22mm	110	7800	2450
24mm	110	9000	1980
26mm	125	10000	1980
28mm	135	16800	1540
30mm	152	17500	1320
32mm	185	18000	1320
34mm	185	18500	1100
36mm	225	18800	880
40mm	260	20000	880
42mm	280	22000	880
44mm	320	24000	770
50mm	405	29000	770
60mm	480	35000	525

Snurrevadtau kan leveres i forskjellig vekt for alle dimensjoner.

NOTA: Nota (i norsk fiske) er sammensatt av 4 like paneler og forlenget med relativt lange og høye vinger. Norske snurrevad har ikke tak (slik som trål har). Nota lages av PE, mens vinger kan være av PA. Sekken er (nesten alltid) av PA. Vi deler snurrevadnota inn i:

- Vingetamper (20-30 m) + børtre + tauarm
- Vinger
- Lask
- Belg
- Overgang (12-metring) og pose/fiskeløft

NOTSTØRRELSE: Det er mest vanlig å beskrive snurrevadets størrelse som antall masker (300 mm) i vingehøyde (ved overgang til lasken). Alternativt kan lengden på telnene brukes. Ved en antatt maskeåpning på θ = 0.4, vil følgende masketall (300 mm) gi vingehøyde på:

> 116# ≈14 m 180# ≈22 m 210# ≈25 m 240# ≈29 m 260# ≈31 m 280# ≈34 m

TELNER: Over- og undertelne (i norsk snurrevad) er like lange (i.e. intet tak). Standard lengde på telnene er 60-65 fv. (110-120 m).

* Unntak: Lofotbestemmelser om maksimale størrelser:

- 1) Telner: Ikke over 67 fv. (123 m)
- 2) Omkrets: 144 m strukket lengde (=480# x 300 mm)

* Lokale reguleringer

MASKESTØRRELSE: Panelene bygges av lett PE

fiber Ø1.8-2.5.

- 1) Vingene: 300 mm (600 mm, eller langsgående tau)
- 2) Lasken: 200 mm
- 3) Belgen/forlengelsen: 150 mm
- 4) Posen og fiskeløft:
 - * Nord av 64°N: 130 mm (125 mm i kvadratmaske)
 - * Sør av 64°N: 100 mm
 - * I Skagerak: 90 mm

FLØYT/SYNK: Snurrevaden må ha en relativt stor netto underflotasjon;

* Små nøter ≈ 15-20 kg

* Større nøter \approx 40-60++ kg

Moderne rigginger omfatter tyngre "skjørt" for å sikre bunnkontakt og å unngå slitasje på nota.

Konstruksjonstegning av en standard 180# snurrevad-not. Gjengitt med tillatelse av NOFI og hentet fra kandidatoppgaven til J. Vollstad (2003).

Floyt (Floats) :

(Sinkers):

6

17 stk. 8" plastkuler (plastic floats)

stk. blystropper (lead staps) 10,2 kg

62,7 kg

72,9 kg

oppdrift (total buoyancy) 56 kg

blytau (lead rope)

Konstruksjonstegning av en 116# Lofotnot (tegning fra 1980tallet).

Eksempel på en norsk snurrevad (260#x300 vingehøyde) med alle detaljer for konstruksjon og montering kopiert fra RHS, Roy Olsen på Gibostad

Snurrevadens høyde på midten blir ca 30 meter med 1,7 knop. Snurrevadens totale vekt er ca 1880 Kg.

Arrangement (2004) på et vanlig kystfiskefartøy

Den opprinnelige formen av snurrevad blir gjort ved at fartøyet ligger for anker under fangstoperasjonen. Bildet t.v. viser ankerseining og operasjon i løpet av døgnet med skiftende strømretning.

Den norske varianten av snurrevad opereres etter det skotske fly-shooting prinsippet: Første arm festes til en blåse og drivanker og armer og not samles ved å sige fartøyet framover samtidig som armene (og not) tromles inn.

I Skottland hales nota motstrøms, mens vi i Norge haler medstrøms. Med medstrøms haling kan vi bruke større redskap.

Eksempel på par-snurrevad

SNURREVOD

Fig. 51 Sammenligning mellem arealerne, der affiskes med hhv. snurrevod og trawl på 2,5 time.

Ved snurrevoddet anvendes 14 ruller tov på hver arm. Det affiskede areal er her tegnet som et regulært cirkeludsnit, og beregningerne er udført på dette. I realiteten er arealet ikke så regulært, som det er vist her (se f.eks. fig. 31).

Ved trawlet er afstanden mellem skovlene 90 m, og der slæbes med 3 sømil/timen.

Figuren over viser hvilket areal over bunn snurrevad og bunntrål ville dekke i løpet av 2,5 timer. Under forutsetning av fisk var uniformt fordelt og at sveipe-effekten (sveiper og tau) var 100%, så ville snurrevaden være nærmere 3 ganger så effektiv som bunntrålen.

Det er ingen tvil om at snurrevad under gitte betingelser er et meget effektivt fiskeredskap. Hos oss er det primært i fangst av torsk og hyse vi bruker snurrevad. Opprinnelig ble snurrevaden konstruert (i Danmark 1848) for fangst av rødspette. Det finnes eksempler på at snurrevad brukes til fangst av sei, sild og blåkveite (på store dyp)

a)

b)

Hvorfor fanger snurrevaden mer selektivt på art og størrelse av fisk enn fisketrål?

FISKERIDIREKTORATET

fgaten 229, Boks 185 Sentrum, 5804 BERGEN 42 151 * Telefax 55 23 80 90 * Tif. 55 23 80 90

TYPE I: Underpanel + Overpanel TYPE II: Underpanel + Overpanel + to sidepanel

PANEL identiske t for et panel		FORPART Vanlige masker	SEKSJON MED KVADRATISKE MASKER	LØFT Vanlige masker
VDERJ jon gitt	MATERIALE:	Polyethylene knutelin	Knuteløst, flettet materiale (PA, PE, PP, PES)	Polyethylene knutelin
og un sifikas	TRAD:	Maks 2x5 mm (alt. 3x3.2 mm)	Maks 7,5 mm diameter	Maks 2x5 mm
ER-	MASKEVIDDE:	Min 135 mm	Min 125 mm	Min 150 mm
V0	LENGDE:	5-8 #	Min 12,5 meter	Maks 4 # mellom løftestropp o ## svlinder, Ellers fritt
	BREDDE:	Maks 50 "frie" masker	Maks 50 "frie" masker	Maks 40 "frie" masker
ANEL		SIDEPANEL FORPART Vanlige masker	KILEFORMET SIDEPANEL Vanlige masker	
IDEP.	MATERIALE:	Polyethylene knutelin	Samme som i seksjon med kvadratiske masker	1
MET S on gitt	TRAD:	Maks 2x5 mm	Maks 2x5 mm (alt. 3x3,2 mm)	
OR	MASKEVIDDE:	Min 135 mm	Min 135 mm	I.
KILEI Spesil	LENGDE:	Som forpart på	Strekt lengde = lengde seksjon med kvadratiske masker	1
	DDEDDE.	21 "frie" masker (25 tot)	Foran: 21 "frie" masker (25 tot) Bak: 0-1 "frie masker (4 tot)	

VANLIGE

MASKER

POSENS FASONG MED

(DIAMANTFORM)

POSENS FASONG MED STOLPEMONTERT

(KVADRATEORM) NETT

Forskrift om utøvelse av fisket i sjøen

(utdrag om bestemmelser for snurrevad pr J-154-2013):

MELDING FRA FISKERIDIREKTØREN J-154-2013 (J-148-2013 UTGÅR)

> Bergen, 3.7.2013 TO/EW

Forskrift om endring av forskrift om utøvelse av fisket i sjøen

Fiskeri- og kystdepartementet har 2. juli 2013 med hjemmel i lov 6. juni 2008 nr. 37 om forvaltning av viltlevande marine ressursar §§ 16, 36 og 37 fastsatt følgende forskrift:

§ 3 Maskevidde i stormasket trål og snurrevad

Det er forbudt å bruke trål eller snurrevad dersom det i noen del av redskapet er mindre maskevidde enn fastsatt nedenfor.

Nord for 64°N.

a) 130 mm.

b) Ved bruk av snurrevad er det kun tillatt å benytte fiskepose med kvadratmasker med en minste maskevidde på 125 mm i et område nord og øst av en linje trukket gjennom følgende posisjoner:

§ 15 Begrensninger i bruk av stormasket trål og snurrevad

a) Snurrevad.

(1) Det er forbudt å bruke fiskepose i snurrevad som er laget av tvunnet eller flettet diamantmasket knuteløst nett.

(2) Ved fiske med snurrevad i området innenfor 4 nm fra grunnlinjene er det forbud å bruke snurrevad som har:

- En kuletelne eller grunntelne som er lengre enn 123 meter fra vingespiss til vingespiss.
- En total omkrets i åpningen større enn 156 meter målt på strukket maske.
- Mer enn 2000 meter taulengde (9 kveiler à 220 meter).

(3) Innenfor Lofoten oppsynsområde er det forbudt å bruke mer enn 1100 meter taulengde (5 kveiler à 220 meter) i den tiden oppsynet er satt.

MTE- 2001 FISKE MED SNURREVAD #15 POLAR SNURREVAD

Stor, moderne snurrevad under bygging på fabrikk

Setting av not

Contrast

Details of construction by hand

REG IS AN ALL ROUND VENOUR TO THE FISHING. AND AQUACULTURE INDUSTRIES

Moderne snurrevad med kraftige skjørt langs fiskeline

Biggest catch in Danish Seine in Norway is 70 tonne round fish.

Picture 1 from "Willasen" with 33 tonnes of fish

Loading one by one ton

Hva med fangstbehandling og kvalitet på slike fangster?

Bilder fra SINTEF F&H 2010: Et utvalg av typiske snurrevadfartøyer

Bilde 5-4 Bilder av fangstoperasjoner. A) Ombordtaking ved hjelp av sekking, ca 500 kg sløyd fisk pr sekk, B) ombordtaking i tørrbinge i storm, C) inntak av snurrevadnota.

Bilde 6-6 Kombinazjonsvinzjer – 12 tonn - for snurrevad, not og evt. tråi (foto: SINTEF Fiskeri og havðruk)

Bilder: SINTEF F&H 2010

Dimensjon og vekt på de to tautromlene vil begrense hvor stor taumengde som kan brukes: Jo tykkere tau, desto kortere lengde vil kunne spoles inn. (Maks. lengde på armene/tauene er nå 2000 m pr side).

Stadig flere snurrevadbåter monterer Triplex (kraftblokk) for sikrere innhaling av nota. Alternativet er ordinær toskivet kraftblokk montert på bom på hekket

Bilde 6-10 Terking av snurrevadsekk ved bruk av kraftblokk (notvinsj) (foto: SINTEF Fiskeri og havbruk)

Greiing av nota under inntak (må skille vingene og grunntelne med tamper fra overtelna)

Stor fangst og mange timers arbeid

15-20% av den norske torskekvoten tas med snurrevad – og andelen er økende på bekostning av line og garn. Begrensede fangster med snurrevad gir fisk av ypperste kvalitet dersom den blir fortløpende bløgget. Utfordringene oppstår når fangstene blir for store!

(Kilde: Akse et al 2004)

Ubløgget torsk fotografert 5 minutter (venstre) og 24 timer (høyre) etter opptak.

Bilde 3. Filetene til venstre kommer fra fisk som er bløgget <5 minutter etter opptak og utblødd 60 min. i rennende sjøvann. Filetene til høyre kommer fra ubløgget råstoff

Moderate fangster med snurrevad er velegnet til føring og lagring av levende fisk.

Fangstbegrensning vil være er en av de store utfordringer med hensyn til overlevelse og kvalitet.

Teknologien for skånsom om bord-Taking av fisk ble utviklet på tidlig 2000-tall. Bakre del av sekken er utstyrt med et vannfylt lerretsløft.

Når fisken er kommet om bord blir Den sortert. Levedyktig fisk lagres i lasterommet rommet. Det må være nok volum og god oksygentilførsel (utskifting av vann).

SINTEF F&H 2010: Automatisering i snurrevadflåten

Automatisk bløgging om bord vil høyne kvaliteten på hvitfisk fra snurrevadflåten og fjerne tunge arbeidsbelastninger for fiskerne. Hensikten med prosjektet var å kartlegge teknologiske utfordringer og muligheter i snurrevadfisket, og da knyttet til fangstbehandling og HMS.

 For lav kapasitet i bløgge/sløyetrinnet på fartøyene er vanlig. Automatiseringsgraden ombord bør derfor økes, både for å forbede fangstbehandlingen og av hensyn til fiskernes helse, miljø og sikkerhet. Viktigst blir det å utvikle nye automatiserte løsninger for bløgging (inkl. mottakstank, bedøving før bløgging og automatisk bløgging) og sortering av hvitfisk (anbefaler utvikling av veiesystem om bord for snurrevadfanget fisk).

Fangstbegrensning/fangstkontroll ble pekt på som en hovedutfordring innen snurrevadfiske under en workshop med næringen i november 2009.

- Ombordtaking av snurrevadfanget fisk bør gjøres mer effektiv og skånsom (interessant også å vurdere helt andre løsninger for ombordtaking enn de tradisjonelle som benyttes i dag).
- Det er behov for mer optimal nedkjøling og kjølelagring av snurrevadfanget fisk. Temperaturen i fisken varierte fra 0,3 til 5,6oC ved landing. Kjøling av fangsten med sjøvann ga ikke tilfredsstillende temperaturer i fisken.
- Risikofaktorer som har betydning for sikkerheten til fiskerne bør reduseres. Hyppigere bruk av riktig verneutstyr anbefales. Hele en av tre snurrevadfiskere sier at de sjelden bruker påbudt personlig verneutstyr, selv om utstyret er tilgjengelig. Også bedre sklisikring anbefales på gangbaner og ståplasser hvor fangstbehandling foregår.

Seniorforsker Bjørnar Isaksen ved HI, Bergen, har gjennom de siste 20 år ledet forskning på snurrevad. HI har flere prosjekter mot bl.a. fangstbegrensning, med finansiering fra bl.a. FHF (Fiskeri og havbruksnæringens forskningsfond).

I de siste 20 årene er det stadig flere kystfiskefartøy som har lagt om redskapsbruken fra garn og line til snurrevad. I dag er det over 300 fartøy som tar hele eller deler av sin kvote med snurrevad (Odd Olsen Råfisklaget, 2009, personlig meddelelse). I kystflåten er det bare fartøy som fisker med garn som bringer på land mer fisk enn snurrevadflåten. Og stadig foregår det en konvertering fra line og garn til snurrevad.

Samtidig med økt effektivitet, hører en ofte om store snurrevadhal, og om dårlig kvalitet på fisk som bringes på land. Dette skyldes ikke de store halene i seg selv, for kvaliteten på fisken er helt på topp idet fangsten hales inn mot fartøyside. Det er fra dette stadiet og den påfølgende behandling av fangst som medfører en kvalitetsreduksjon. Snurrevadfartøy generelt har ikke mottaks- og produksjonskapasitet som står i forhold til den fangstkapasiteten som kombinasjon av fartøy og redskap til tider viser. Fangstene sekkes ofte direkte om bord, og bløgges eller aller helst direktesløyes med dårlig utblødning som resultat. Med mannskap på 6 til 7 personer, vil store fangster ofte ikke være ferdig bearbeidet, dvs bløgget og sløyd før etter seks til åtte timer. Dette gir uvilkårlig en redusert kvalitet på ilandbrakt fangst. Dette er spesielt iøynefallende i hysefisket.

Under fangst av levende fisk forsøker fartøyene å unngå fangster større en ca ti tonn. Store fangster fører til mange sekkinger, med flytting av fisk fram og tilbake i forlengelse og sekk flere titals ganger, og rygg- og bukfinner blir oppfliset (Isaksen & Midling 1995). Skinn utsettes for slitasje, og hinnen over øyene på fisken mattes ned. Store fangster medfører også dårlig kontroll med oppstigingshastigheten til snurrevadposen. Ofte kommer store fangster opp fortere enn middels store og små fangster. Dette medfører at en mindre del av fisken har klart å kvitte seg med svømmeblæregass fra bukhulen og fangsten består da av flere "flytere", det vil si fisk med gass i bukhulen når den kommer til overflata. Denne fisken er svært dårlig egnet til innsetting i merd.

I takt med konvertering av garn- og linefartøy til snurrevad, er det stadig flere mindre fartøy som legger om til snurrevad. Dersom signalene fra Fiskeri- og kystdepartementet om et friere redskapsvalg følges opp og blir en realitet, er det ikke utenkelig at den mindre flåte under f.eks. 15 meter vil få anledning til to-båts snurrevad. Dette vil gi denne flåten det nødvendige løft med hensyn til fangsteffektivitet, men samtidig en risiko for enkel tilfeller av store hal. På små fartøy vil store hal, og spesielt med "synkesekker" under dårlig vær, kunne være en risikofaktor, og fangstmengden bør derfor kunne reguleres.

Appendix A13

A review on the application and selectivity of square mesh netting in trawls and seines

WORLD SYMPOSIUM ON FISHING GEAR AND FISHING VESSEL DESIGN WORKSHOP ON THE APLLICATION AND SELECTIVITY OF SOUARE "A review on the application and selectivity of square Triat loge INSTITUTE OF FISHERIES AND MARINE TECHNOLOGY NETTING IN THE CODEND OF TRAWLS AT THE The Norwegian College of Fishery Science ST. JOHN'S, NEWFOUNDLAND, CANADA mesh netting in trawls & seines". P.O.Box 3083, Guleng, N-9001 Tromso FRIDAY NOVEMBER 25. 1988 University of Tromso Roger B. Larsen à R B LARSEN: A REVIEW ON THE APPLICATION AND SELECTIVITY OF SOLVAGE RESH NETTING IN THE CODEND OF TRAMLS & SELVES. between square mesh and diamond mesh codends, promising results with respect to the survival of escaping fish when using square of testing the square mesh codends. At the present stage, however, 18 measured when using the diamond mesh codends. Through comparisons in order to achieve more valid results. The importance of this mesh codends are obtained. The observation techniques used may be further and continously discussed, and improvements may be found If the official purpose is to reduce the bycatch of juvinile fish to assure the recruitment to stocks, the findings with respect to survival rates should certainly favour the introduction of square tors, mentioned earlier, should also favour the use of the square With respect to the selectivity of juvinile shrimps, our results significant, this method should be considered as an altenative to ends should be a good alternative to the proposed increasement of Will the selectivity drop at increasing catches when using square mesh codends in ordinary white fish travis and Danish seines, and with relatively short lacing ropes, shows comparable improvements This improved selectivity is explained If this finding is Valid conclusions may be difficult to draw from these first years work on codend selectivity it should be stressed that constructmesh codends. In this point of view, the use of square mesh codthe mesh size of normal, diamond mesh netting. Several other facand one of the important questions to be answered is how increasing catchaizes affects the selectivity in these types of codends. gave evidences for a reduced selectivity as the catch sizes grev. Preliminary regults given by the Institute of Fishery Technology when testing a normal, diamond meshed codend, equipped of the selectivity (at lover catch rates) as obtained when using by more open meshes in the codend as the short lacing ropes cauone single, but important, advice could be given: In the further ional changes of the codends are needed if a significant improve-Further experiments when using the square mesh netting is needed, low survival rate on escaping fish, especially on the haddock, ment with respect to size selectivity shall be obtained. will it be possible to solve such problems? ses a slacker netting all along the codend. 22 issue is, hovever, indisputable. the square mesh codend method. the square mesh codends. mesh codends. Research,

need IOF a reduction of the mean sizes (compared	The square mesh netting in the codends of fishing gears like the	travis, may be very useful with respect to increased selectivity i.e. to avoid too high losses of the commercial of this type of gears, and for the saving of the juvinile fish of (and shrimps).	commercial important species. It seems very difficult to explain, and to have	Through several years of experiments with square mesh codends, a line of information of the mesh size, when discussing the formation staffs. This may define the several procession of the several sev	by research institutes on a global bases.	In spite of the convincing selectivity results found, more infor- mation on the practical field, and the application of these types	of codends, is needed. material (PA, PES, PE or PP) may be important.	The initiative taken by the "aquare mesh codend" committee should all our experiments using nylon (PA), which is he arknowledged and this vorkehop will be acknowledged and this vorkehop will be acknowledged and this vorkehop will be acknowledged.	arguments and practical guidelines for the further development of some nev, and really selective codend constructions. Yet not clear.	Most of the work on square mesh codends in fish travis and in the Testing have stated a reduction of the knot br Danish seine done in Norvay, have been made by the Institute of knotted square mesh netting compared to knotted Fishery Technology Research. This paper is, however, written as a in the order of 15 - 25%. This reduction of the review on square mesh codend selection experiments the Norvey in the order of 15 - 25%.	College of Fishery Science has been involved with, and will thus practical problems are discovered in using kno give information about a rather small part of all the experiments netting, and heades knotted netting is prefer	made in Norvay during the period 1983 - 1988. to repairing of broken meshes. To compensate for breaking atrength. ve've used lengthying large	No references are given in the paper, but most of the results are straps" (instead of increased twine thickness) already published by Karlsen & Larsen (1988)* and by Isaksen & of the square mesh codends. Larsen (1988)**.	* Karlsen, L. & Larsen, R. B. 1988; Progress in the Selective Shrimp Travl Development in Norvay. World Symposium on Fishing Gear and Fishing Vessel Demign. St. John's. Marfoundiand. Canada Movember 31-34 1989	at Isakaan. B. 1 Larman. R. B. 1999; Codend Salantivity of the name of the for developing systems which reduces the codend	investigated by the Trouser Travl Method. Coun. Neet. int. Coun. Explor. Sea. 1988. B: 28.	One of the most interesting findings, and also important findings, when using the square mesh drastic difference with respect to survival of	The square weeh netting in the codends of fishing gears like the travia, may be very useful with respect to increased selectivity of this type of gears, and for the saving of the juvinile fish of commercial important species. Through several years of experiments with square mesh codends, a lot of information about improved selectivity results found, more information on the practical field, and the application of these types of codends, is needed. The initiative taken by the "square mesh codend" committee should be acknowledged, and this workshop will hopefully give ideas, new arguments and practical guidelines for the further development of some new, and really selective codend constructions. Hot of the work on square mesh codend's the institute of rishery Technology Research. This paper is, however, written as a college of Fishery Science has been involved with, and will thus give information about a rather small part of all the experiments and published by Karisen & Larsen (1980)**. No references are given in the paper, but most of the results are already published by Karisen & Larsen (1980)**. Karisen, L. & Larsen, R.B. 1980 Progress in the Selective Shrisp Travi Development in Norway. World Symposium of Fishery St. John's, Kevtoundland, Canada. Kowaber 2124. 1980. ** Takeen, B. & Larsen, R.B. 1980: Codend Salectivity of the Danish seine in Norway. World Symposium of Fishery St. John's, Kevtoundland, Canada. Kowaber 2124. 1980.
The square mesh netting in the codends of fishing gears like the size) in this travis, may be very useful with respect to increased salectivity can discribe and for the saving of the juvinils fish of commercial isportant species. It seems to commercial isport of experiments with square mesh codends, a biologiet by research institutes of a selectivity results found, more information about improved selectivity results found, more information on the practical field, and the application of these types of codends, is needed. It is a reduction of the precise, and by the "square mesh codend" committee should be acknowledge, and this workshop will hopefully give issues, new and really selective codend constructions. The precise of the vork on square mesh codend is needed. This paper is however, written as a final really selective codend constructions. The order of an Norway during the period 1980 - 1980. The version and by fashed by Karlaen & Lareen (1980) and by laskeen & area first and the sperior of the vork on function. We shall be the first the share in the order of the second and the second selective first and by laskeen is are of the square seen involved with and by laskeen & area of the square been involved with and by laskeen & area of the square been involved with and by laskeen is the square been and by the first the square the square the square the strate of the comparison of the square seen involved with and by laskeen & area of the square been involved with and by laskeen & area of the square the square the shing the precise in the order of the square to first and by laskeen in the square of the square the square the square the square the square strate the square the square strate is a strate of the square is a strate of the square is a strate first is the square the square strate of the square strate the square strate strate of the square strate should be acknowledge that the square strate should be acknowledge that the square strate should the square strate of the square strate should the square strate	 Interval, important species. Connectial important species. It seems of experiments with square mesh codends, a late of information about improved melectivity have been obtained by research institutes on a global bases. In spite of the convincing melectivity results found, more information on the practical field, and the application of these types of codends, is needed. In spite of the convincing melectivity results found, more information on the practical field, and the application of these types of codends, is needed. In spite of the convincing melectivity results found, more information on the practical field, and the application of these types of codends, is needed. In spite of the convincing melectivity results found, more information and practical guidelines for the further development of comments and practical guidelines for the further development of comments and practical guidelines for the further development of context and the specific codend constructions. In spite of the vork on square mesh codend in fish travis and in the prevent on square mesh codend melective codend constructions. In the preview on square mesh codend selective of the results and in the paper is hove event, written as a set of the vork on square mesh codend selective should constructions. In resting the period 1993 - 1986. In resting the period 1993 - 1986. In rest, in the paper is the selective should practical is an the code of the vork on square mesh codend selective should construction. In select public diverses in the Selective should construction. In the code is the starsen (1969) and by Isaksen is aread vill favour practical is at age of the selective for the selective of the selective should by the from the selective of the selective is the selective should by the selective is the selective is the selective set of the selective is the selective set of the selective is the selective is the selective	Through several years of experiments with equare mesh codends, a lot of information shoul improved selectivity have been obtained by research institutes on a global bases. If seems of codends, is needed. If and the application of these types of codends, is needed. If and the application of these types of codends, is needed. If and the application of these types of codends, is needed. If and the splication of these types of codends, is needed. If and the splication of these types of codends, is needed. If all, and the application of these types of codends, is needed. If an each codend constitute should see acknowledged, and this vorkahop will hopefully give ideas, new serguments and practical guidelines for the further development of some new, and really selective codend constructions. If the vork on square mesh codends in fish travia and in the paper is hovever, written as a review on square mesh codend selection experiments the Norvegian for a global been involved with, and will thus practical in the paper is hovever, written as a review on square mesh codend selection experiments the Norvegian the period 1983 - 1986. If the results are investing the period 1983 - 1986 and by Isaksen farmer will favour practical selection forway during the period 1983 - 1986 and by Isaksen farmer as a streng if the sequence in the square is a streng further section of the sective Shring Travi Dreaking at a streng of the square is and by Isaksen farmer set of the square is a streng further sequence is the sective string for develop interest in the section farmer set of the square is a streng further section of the sective string is a streng for the section is a streng further section is a streng further section is a streng for the section is a streng fo	Through several years of experiments with equare mesh codends, a reduction by research institutes on a global bases. In spite of the convincing selectivity results found, more information on the practical field, and the application of these types of codends, is needed. The initiative taken by the "square mesh codend" committee should be acknowledged, and this workehop will hopefully give ideas, new arguments and practical guidelines for the further development of called guidelines for the further development of antertal (if an each codend constructions. The initiative taken by the "square mesh codend" committee should be acknowledged, and this workehop will hopefully give ideas, new and really selective codend constructions. The acknowledged and this workehop will hopefully give lines the further development of can allow a material (if an each codend selection experiments the Norvegian about a rather small part of all the experiments are vill favour practical in Norvey during the period 1963 - 1980; and by isaken & areen (1980)**. • Karleen, L. & Larmen, R.B. 1986; Progress in the Selective Shring Travil prevention formal, Ganada, Kovelop in the specifier of the antist of state of state of set of the round. Stating dear and fishing the normal, ends is into the area (1980, B) 23. • Isaken, B. & Larmen, R.B. 1986; Codend Selective; of the Danish seine invertion in the area, fishing taken of a diverse fished. Com. Newt, int. Com. Explor.	 In spite of the convincing selectivity results found, more information on the practical field, and the application of these types of codends, is needed. Ine initiative taken by the "square mesh codend" committee should be acknowledged, and this vorkahop will hopefully dive ideas, new arguments and practical guidelines for the further development of sole of the vork on square mesh codend constructions. fost of the vork on square mesh codend in fish travis and in the previous and practical guidelines for the further development of practical guidelines for the further development in florway. Worker 1 as the sense involved with, and will further the order are for oregan. for references are given in the paper, but most of the results are to repairing the period 1983 - 1980; and by fashen % are to repair in the order of all favour practical guidelines for the further formed will favour practical guidelines for the further formed will favour practical guidelines for the square or fishing the period 1983 - 1980; and by fashen % area for the square time formers. for references are given in the paper, but most of the section of the square or square. for the square spect is hordered as a strange (in the square or spection). for the square spect is formed will favour the square or spection. for the square spect is hordered specting the spection. for the square spect is formed to the	In spite of the convincing selectivity results found, more information on the practical field, and the application of these types of codends, is needed. The initiative taken by the "square mesh codend" committee should selective arguments and practical guidelines for the further development of the results and in the order of practical guidelines at a rather small part of all the experiments the work on specifical guidelines and function about a rather small part of all the experiments the results are filesen (1988) **. Io references are given in the paper, but most of the results are filesen in Norway. Research. This paper is not by Tasksen 5 areas (1988) **. Issues, B. 6 Larmen, R.B. 1988; Progress in the Selective Shrimp Travi practical ends the normal, ends a stepper (in of the square timestimestimestimestimestimestimestimes	 of codends, is needed. The initiative taken by the "square mesh codend" committee should be acknowledged, and this workshop will hopefully give ideas, new can allow a sequence and practical guidelines for the further development of some new, and really selective codend constructions. fost of the work on square mesh codend selection experiments and in the panish seine done in Norway, have been made by the Institute of rishery Technology Research. This paper is, however, written as a review on square mesh codend selection experiments the Norwegian Soliege of Fishery Science has been involved with, and will thus in the ordering the period 1963 - 1968. to references are given in the paper, but most of the results are to repairing the period 1963 - 1968. fanlam, L. & Larman, R.B. 1966; Progress in the Selective Shrimp Travi Development in Norway. World Symposium on Fishing Gear and Fishing Versel to rot at sequences in Norway. World Symposium on Fishing Gear and Fishing Versel the normal, ends is interesting the normal, ends is interesting to row of the square to repair in the selective of some target. Kalaman, L. & Larman, R.B. 1986; Codend Selectivity of the Danish seine investigated by the Trouser Travi Method. Coun. Newt. Int. Coun. Explor. Man of a peed of the format the to the the ormal is interesting to repair the set of the set of the term of the more the normal. 	The initiative taken by the "square mesh codend" committee should can allow a can allow arguments and practical guidelines for the further development of constructions. The vork on square mesh codends in fish travls and in the panish seine done in Norvay. have been made by the Institute of the vork on square mesh codend selection experiments the Norvegian codend selection experiments the Norvegian codend selection experiments the Norvegian thus codend selection experiments the Norvegian thus codend selection experiments the Norvegian codend selection experiments the solut thus the experiments are given in the paper is, however, witten as a context of fishery Science has been involved with, and will thus the experiments and will favour practical network of the paper (in the order of the results are codend by Karlsen & Larsen (1988)* and by Isaksen & codend selection of the solut of the squares (1988)**. Norld Symposium on Fishing Gear and Fishing Veesel codend selection for develop the normal, ends is into for develops. Norway. Norld Symposium on Fishing Gear and Fishing seine the normal, ends is into for develops. St. John's, Newtoundland, Canada. Norwaber 2174. 1998.	 arguments and practical guidelines for the further development of institutes, new institutes of institutes in the vork on square mesh codends in fish travis and in the panish set of not cle in Norway. Nave been made by the Institute of ishery Technology Research. This paper is, however, written as a review on square mesh codend selection experiments the Norwegian pive information about a rather small part of all the experiments are given in the paper, but most of the results are increased uring the period 1903 - 1988. Isaker, L. & Larmen, R.B. 1988; Progress in the Selective Shrimp Travi Development in Norway. World Symposium on Fishing Verseel period selectivity of the Danish seine investigated by the Trouser Travi Nethod. Coun. Network Shrimp Travi Sea. 1998. Bi 20. 	<pre>fost of the vork on square mesh codends in fish travis and in the Janish seine done in Norvay, have been made by the Institute of "Ishery Technology Research. This paper is, hovever, written as a "sylev on square mesh codend selection experiments the Norvegian College of Fishery Science has been involved with, and will thus practical nade in Norvay during the period 1983 - 1988. The experiments are liready published by Karlsen & Larsen (1988) **.</pre> * Karlsen, L. & Larsen, R.B. 1988: Frogress in the Selective Shrimp Travi Development in Norvay. World Symposium on Fishing Gear and Fishing Vessel Development in Norvay. Boll Codend Selectivity of the Danish seine investigated by the Trouser Travi Method. Coun. Newt. Int. Coun. Explor. Sea. 1988, B: 20. Done of the fiber State	Sollege of Fishery Science has been involved with, and will thus practical practical information about a rather small part of all the experiments in thus practical netting, a constant of netting, and in Norvay during the period 1983 - 1988. Io references are given in the paper, but most of the results are to repairing the period 1983 - 1988. Io references are given in the paper, but most of the results are traps" (in thready published by Karlsen & Larsen (1988)**. Karlsen, L. & Larsen, R. B. 1988: Progress in the Selective Shrimp Travl Development in Norvay. World Symposium on Fishing Gear and Fishing Vessel the normal, ends is int for development. * Isaksen, B. & Larsen, R. B. 1988: Codend Selectivity of the Danish seine investigated by the Trouser Travl Method. Coun. Neet. int. Coun. Explor. One of the squate the trouser the the first the trouser the the set. int. Count is a set. 1988. One of the set of the trouser the the set. int. Count is the the set. interview. One of the set of the trouser the the set. int. Count is the the set. interview.	nade in Norway during the period 1983 - 1988. To references are given in the paper, but most of the results are liready published by Karlsen & Larsen (1988)* and by Isaksen & breaking at arsen (1988)**. * Karlsen, L. & Larsen, R.B. 1988: Progress in the Selective Shrisp Travl Development in Norway. World Symposium on Fishing Gear and Fishing Vessel Design. St. John's, Newfoundland, Canada. November 2124. 1988. * Isaksen, B. & Larsen, R.B. 1988: Codend Selectivity of the Danish seine investigated by the Trouser Travl Method. Coun. Neet. int. Coun. Explor. One of the the of the the the set of the the set of the set.	 io reterences are given in the paper, but most of the results are strand by Fights and Fights	 Karlsen, L. & Larsen, R. B. 1988; Progress in the Selective Shrimp Travl Development in Norvey. World Symposium on Fishing Gear and Fishing Vessel Design. St. John's, Hevfoundland, Canada. November 2124. 1986. Isaksen, B. & Larsen, R. B. 1988; Codend Selectivity of the Danish seine investigated by the Trouser Travl Method. Coun. Neet. int. Coun. Explor. See. 1988. B: 28. 	It Isaksen, B. & Larsen, R. B. 1988: Codend Selectivity of the Danish seine investigated by the Trouser Travl Method. Coun. Newt. int. Coun. Explor. Sea. 1988. B: 28.	investigated by the Trouser Travl Method. Coun. Neet. int. Coun. Explor. than of a d See. 1988. B: 28. One of the	One of the	draatin dif	

.

r b langen: A review on the Application and selectivity of source nesh netting in the codend of tranks & seines.	r & largen: A review on the application and selectivity of square next netting in the coord of tranks & series.
DISCUSSION	INTRODUCTION
Equare mesh codends are shown to be superior compared to diamond mesh codends with respect to the size selectivity of fish. Using	
the square mean netting in the covenue, the selection factor vill normally be increased, but more interesting is the decrease of the selection range, followed by a sharper selection curve.	For any type of active fishing gear, like trawls, the bycatch of Juvinile fish has always been a considerable problem. By active fishing gears we primarily think of the gears like purse seines, trawls and (Scottish or Danish) seines. These groups of fishing
If the retention length is adjusted to the legal minimum (catch- able) size of the species through the choice of the mesh size in the <u>gquare</u> mesh codend, two important considerations are achieved	gears are all characterized by their rather low gelectivity. An exception, though, should be made for the purse seines, which are normally used on dense shoals of one species of fish, uniform in
at a sharper selection curve: Less juvinile fish vill be retained in the catch, and more of the commercially utilizable fish (above the legal minimum size) is caught, thus pleasing both biologists and fishermen.	size. As the capacity and effeciency of the fishing fleet using active fishing gears has increased during the past decades, by- catches of juvinile fish may be one of several factors explaining the drastic decline of many commercially important species.
Several groups of biologists, fighermen and their organizations, and environmental organizations, are claiming an increase of the mesh sizes of fishing gears like the travls, to prevent catch of the juvinile fish of important species. In the northern waters of Norway, this will implicate an increase of the mesh size for fish travls (and Danish seines?) from today's 133 mm to 155 mm, using PA or PES materials in the codend.	Since the early gixties it has been investigated and (well) under- stood why a fishing gear like the travl and the seine necessarily will catch high numbers of small fish when fishing in an area with mixed size groups. In spite of the effects caused by different materials used, twine thickness and stiffness, catch size, towing time, etc., this is mainly due to the construction of the codend itself and the use of the normal, diamond shaped meshes.
Such increasements of the mesh sizes will most likely not affect the shapes of the selection curves, but move the curves more to the right side (of the fish-length scale). Using the normal, dia- mond mesh, codends and even a mesh size as high as 155 mm, still huge amounts of juvinile fish may be caught, especially at higher catch rates. Additionally fishermen will note, and react upon, the considerable loss of commercially valuable fish an increase of the mesh size will cause.	A lot of effort has been put into the work to establish selection factors. retention lengths and selection ranges, when changing parametres as for example twine material, twine thickness, towing time, catch sizes and mesh sizes. The value of all these experi- ments and the huge amounts of data may be discussed. Biologists and administration staffs seems to be very concerned about the selection factors and retention lengths obtained by the
The effects upon selectivity caused by a diamond mesh codend, i.e. a vide selection range, vill in case of a increased mesh size to 155 mm, cause many "lav breakers", as fishermen vill develop sys- tems for reducing or avoiding selectivity on commercially utiliz-	gears. In their aim for fitting the retention length (for a given species) to the legal, catchable size of the fish, they "forget" to discuss the more important selection ranges.
able fish. A paradox may be that such attempts of avoiding selec- tivity vill be more often seen, and obviously more damaging, in times when strict (quota) regulations are needed, as a result of over-exploited stocks, than seen under conditions with plenty of fish (and less concerns about catch of juvinile fish).	of fish by using the selection factor and a given mesh size, is simple mathematics. It will, however, have very limited value as long as no information about the selection ranges is given, i.e. how big proportions of undersized fish will be taken, and how big proportions of oversized fish will be lost around the retention length (L_{50*}) when fishing in an area with fish of mixed sizes.

r 8 larsen: A review on the application and selectivity of square nesh netting in the codeno of tranls & seines.

the legal mesh size to 155 mm. mesh size in cod travling has arisen, and the idea is to increase **size** today. sed from 120 mm, northern parts of Norvay (above 64°N), has been gradually increa-During the past 20 years the mesh size for cod trawling For the last two years, again a discussion about the to 125 mm and to 135 mm, which is the legal mesh

Codend selectivity

It is commonly known that almost all of the selection in a normal

sed, thus leaving almost no possibilty for small fish to escape. closed as the catch grows and/or when the towing speed is increaof the growing catch. sentral parts of it, i.e. over a few meshes in length and through the upper panel of bottom travl vill take place in a very small area of the where the meshes will be squeezed open just in front the meshes vill elongate and become nearly In most of the codend, especially in the

type of codend in cases with bigger catches. breaking strength of the twine and handling problems with this these are: by law introduce square mesh netting in the whole codend. latter method is complicated by a number of factors, to achieve slacker netting and thus getting open meshes along the whole codend piece. The other, and more complicated, method is to lacing ropes must be shorter (10-15%) than the netting, introduce lacing ropes along the normal, diamond mesh codend. The trawl codend. The easiest, and also the cheapest way is to by law ible to delvelop a really selective travl codend. it seems to be two realistic ways of increasing selectivity in a Only by changing the construction of the codends, will it be poss-Reduction of the mesh size in the codend, a reduced At the moment and among This

panel with a thin twine (which will break either in the sea at a big catch in the codend or as the catch is hauled on board), etc. than lover panel in the codend, seving up the meshes of the overthese methods are: Use of round straps, use of a shorter overpanel are known to effectivily reduce the codend selectivity, and among developed by fishermen to reduce and avoid selectivity in the codleading "gear technologists". A lot of sophisticated systems are should be kept in mind that the fishermen are among the vorlds Whenever a new construction of a codend is to be Using the normal, diamond meshed, codends, several methods

Nay 1986. grammum acqlefinum) comparing the 120 am square mesh codend to the Figure 10; Selection curves for cod (Gadus morhum) and haddock (Melano-120 wm diamond mesh codend. Results from the Danish seine experiments

R B LORGENIE A REVIEW ON THE APPLICATION AND SELECTIVITY OF SQUARE NESH NETTING IN THE CODEND OF TRAMLS & SELNES.

Species Normally Found In the Shring Catches	MOST COMMON SIZE RANGE	REBARDED AS VALUABLE AND SALEABLE FISH BY SHAINPERS	Sorting effect when using The hh-sorting ponel
Cod (Badus worhua)	15-70 cm	yes, above 42 cm	high
Haddock (NeTanogrammis aeglefinns)	15-50 cm	yes, above 39 cm	high
Saithe (Pollachies vinens)	25-50 cm	yes, above 35 cm	very high
Plaice (<u>Pleuronectes</u> platessa)	25-55 cm	yes, above 29 cm	very high
Tusk (Brosue brosue)	40-60 cm	Ĭ	very high
Greenland halibut (Reinhardtius hippoglossoides)	20-60 cm	Ĭ	high
Spotted catfish (<u>Anarhichas</u> <u>wingr</u>)	30-60 cm	ď	very high
Red-fish (Sebastes 50.)	6-45 cm	2	100
Long rough dab (Hippoglossoides platessoides)	12-45 cm	8	partly high
Witch (<u>Blyptocephalus</u> <u>cynoglessus</u>)	20-45 cm	B	high
Common dab (Limanda limanda)	15-35 cm	90	partly high
Flounder (<u>Platichthys flesus</u>)	20-35 cm	8	partly high
Thornback ray (<u>Raja clavata</u>)	10-55 cm	advices N second	high
Blue whiting (M <u>icromesistius</u> poutasseu)	20-30 cm	7	partly low
Norway pout (<u>Boreoqadus</u> <u>esaarkii</u>)	12-30 cm	8	in the second se
Polar cod (<u>Boreogadus saida</u>)	15-25 cm	8	Iow
Lumpfish (<u>Cyclopterus lumpus</u>)	30-45 cm	8	very high
Herring (Clupes harengus)	15-30 cm	8	low
Capelin (Mallotus villosus)	10-16 cm	90	very low
		2	very low

Total catch (no.)

8

0

24.5 29.5 34.5 39.5 44.5 49.5 54.5 59.5 64.5 69.5 74.5 79.5

Length (cm)

77.

.....

h h

200

/////.

//////

300

Cod

135 mm diamond

More than 20 other species of fish are regularly found as bycatch in the shrimp trawl.

Total catch (no.)

8

8

Haddock

135 mm diamond

ð

20

0

24.5 29.5 34.5 39.5 44.5 49.5 54.5 59.5 64.5 69.5 74.5 79.5

Longth (cm)

2

11111

11111

1111

8

R & LARSEN: A REVIEW ON THE APPLICATION AND SELECTIVITY OF SQUARE NESH NETTING IN THE COODIN OF TRAMLS & SEINES.

the Danish seine experiments May 1986.

u.v. vehicle) is given.

Danish seine:

considerable difference is seen with respect to haddock. tivity by the square mesh codend with respect to cod, are given in Fig. 7. The results indicate a slightly better selecring the 120 mm square mesh codend to the 120 mm diamond codend, The length-frequency distributions of cod and haddock when compawhilst a

haddock (above 39 cm total length) is lost by the square mesh cod-It should be noted that a very high proportion of the over sized end compared to the 120 mm diamond mesh codend.

fish were seen to escape as the codend lay along the vessels side codend. The results are given in Fig. 8. size range 30-60 cm) were lost when using the 135 mm especially when using the 135 mm diamond mesh codend, a lot of high proportions of legal sized, and commercially utilizable, cod before hauling the catch on board. (above 42 cm total length) and as good as all the haddock (in the square mesh codend, fev hauls comparing a 135 mm diamond mesh codend, confirmed the fishermen's allegations: Very In all the experiments, diamond mesh to a 120 mm

of commercially utilizable fish were lost, haddock in particular. codend for both cod and haddock. in Fig. frequency distributions between the different codends, mesh and the 120 mm diamond mesh codend. used Using the "tvin codend method", a small meshed codend (60 mm) vas for establishing the selectivity of both the 120 mm square 9, showing a very high mesh selection in the square mesh As seen, very high proportions Comparisons of lengthare given

tion curve, obtained when using the square mesh codend compared ding, vere 8.5 cm and 13.5 cm, respectively. tion factors obtained were 4.7 and 4.5, mm diamond mesh codend, are given in Fig. 10. to the diamond mesh codend. The selection curves for both the 120 mm square mesh and the 120 is the narrover selection range, and thus a sharper selec-The most interesting finand the selection ranges For cod the selec-

gress of the left side of the selection curve, however, indicates of the selection curve for this species was impossible. Due to very few haddock above 50 cm total length, the calculation mm square mesh codend. a selection factor for haddock higher than 4.0 when using the 120 The pro-

Figure 2: Construction of the two 35 mm (square and diamond) mesh codends used during shrimp trav! experiments along the coast of Spitzbergen, 1984-1988. A principal sketch of a combined sorting system, used during the experimental period in 1987, is given.

Table 2: Sorting effects (%) upon shrimps and some species of fish when using the combined sorting system with the 70 mm HH-sorting panel and the 16 m square mesh codend. The results are given as a comparison between 8 different hauls (4 parallells) made during the test period in 1987, along the vestern side of Spitzbergen. SUMING EFELTS BY THE 70 MM HH-SUMING RNEL COMPANISON I 2 3 4

Brringe (Pandalus borealis), size range: 9-26 un carapace length. (loss by weight) Cod (<u>Badus worthua</u>), size range: 20-65 cm total length. Palar cod (<u>Borecondus saida</u>), size range: 4-20 cm total length. Shake blenny (<u>Lumernus launctaeformis</u>), 624 174 - 574 size range: 10-25 cm total length.	SPECIES	The street	Date 1			
Cod (<u>Gadus worthu</u>), size range: 20-65 on total length. Polar cod (<u>Boreogadus saida</u>), size range: 6-20 on total length. Svake blenny (<u>Lumernus lamortareformis</u>), 624 174 - 575 size range: 10-25 on total length.	Bhrimps (<u>Pandalus borealis</u>), size range: 9-26 mm carapace length. (loss by weight)	II and a	*	3	25	
Pelar cod (<u>Boreopadus saida</u>), 2004 1914 XXV 6014 size range: 0-20 cm total length. Svake blenny (<u>Lumenus lamoretaeformis</u>), 624 174 - 574 size range: 10-25 cm total length.	Cod (<u>Badus wortwa</u>), size range: 20-65 cm total length.			3	23	
Svake blenny (<u>Limpenus Laupretareformis</u>), 624 174 - 574 size range: 10-25 cm total length.	Polar cod (<u>Boreogadus saida</u>), size range: 8-20 cm total length.	発	36	Ħ	1 59	
	Shake blenny (L <u>umpenus Lampretaeformis</u>), size range: 10-25 cm total l ength.	53	12		24	

E NECH CODEND	e sarting panel)
BRUDS N 91	through the
EFFECTS BY THE	nd fish passed
SORTING	(Shrimps au

COMPARISON	and and a	2	м	•	
SPECIES:	SALE SUPE	Active bold		Trans.	
Shrimps (Pandal <u>us borealis</u>), size range: 9-15 mm carapace length.	815	10	565	211	
Pelar cod (B oreogadus saida), size range: 8-15 cm total l en gth.	23	Ş	885	161	
baake blemny (L <u>umpenus Laupretaeformis</u>), size range: 10-25 cm total length.	¥6	Ř		874	

r & larsen: A review on the application and selectivity of savare nesh netting in the coopid of tranls & seines.	r B Larsen: A review on the Application and selectivity of Square Mesh Netting in the coopen of tradus 4 selves.
Danish seine:	Shrimp travla:
Experiments with square mesh codends in Danish seines have been carried out since 1983. The most reliable results were, however, obtained during the test period in 1986. These experiments were made on board the 20 m commercial seiner "Karl Viktor", along the coast of eastern Finnmark, Northern Norway, using a 180 mesh (300 mm) seine. The fishing trials were made on rough bottom at depths of 80-230 m, using 3.5 to 5 colls of ropes (on each side).	The use of a 16 m long square meshed codend in shrimp travis has been successful in a selectivity point of view. The calculated reduction of undersized shrimps (less than 6 cm) varied from 30% to 90%, comparing the 35 mm square mesh codend to the 35 mm dia- mond mesh codend. The selectivity will be dependent upon the size distribution of shrimps and the catch size, i.e. reduced selecti- vity at increasing catches.
Two mesh sizes in the square mesh codends were tested, 120 mm and 135 mm, and their catches were compared to the catches when using 120 mm and 135 mm normal, diamond meshed, codends. For the square mesh codends, a four panel design was used, strengthened with 4 lentghwise lacing ropes and several roundstraps (corresponding to the circumference of the codend). The material used, was knotted	The fishing trials have also stated that small and in particular slim bodied species of fish, will effectively be removed from the shrimp catches, thus saving time-consuming sorting work on board the vessels. The most common, and most numerous, species of fish in the shrimp catches in the Spitzbergen area, are snake blenny (<u>Lumpenus lampretaeformis</u>), polar cod (<u>Boreogadus saida</u>) and red-
mm knotted double PA. The constructions of the four different cod- ends are given in Fig. 3. Since the composition of species on the fishing grounds changed as the current changed, the "alternate haul method" had to be re-	is close to 90%, while the polar cod and the red fish species are more difficult to sort out through the 35 mm meshes. In the size range 8-20 cm, hovever, more than 80% of the polar cod was sorted out. Results when using a combination with a 70 mm sorting panel and a 16 m long 35 mm square mesh codend, are given in Table 2.
jected, and the "twin codend method" was used. A special arrange- ment, which is shown in Fig. 4, was used. A subscript the use of two parallell codends to be tested during one haul. In order to assure a correct distribution of fish between the two codends, a 8 m long small meshed panel (vertically mounted) shared the ex- tension piece into two equal halves (well in front of the tested codends).	A comparable construction of the square mesh codend, as described for the cod travl experiments, has been tested in shrimp travls. The best results are undoubtedly obtained if the entrance to the last section of diamond meshes (8 m long) is closed (by a codline) during the fishing operation. The "codline" is opened as the cod- end is hauled on board, and the catch will slide from the square mesh part into the diamond mesh part of the codend.
Observation of fish reactions:	In spite of several years of testing, no handling problems or con- structional problems are seen when using the square mesh codends in (deep sea) shrimp trawling.
Fish reactions to the gear and the selectivity of different types of codends have been studied in detail by the Institute of Fishe- ry Technology Research (Bergen), using the remote controlled u.w. vehicle "Ocean Rover" and other types of u.w. vehicles.	
During a cod trawl selectivity experiment during the summer 1988, fish reactions to the 120 mm square meshed codend with the small meshed funnel (see page 4), were studied.	

.

13

.

Figure 5: Relative catch distribution (%) for cod (<u>Gadua</u> gorhug) in a 120 we square mesh and a 125 we dismond mesh codend found during the cod trav! experiments Harch 1968.

12

Figure 3: Construction of the four different codends used during the Danish seine experiments along the coast of Finnasrk, Hay 1986. The diamond mesh codends (120 and 135 mm) are of a two-panel design, whilst the square mesh codends (120 and 135 mm) are of a four-panel design. All codends were equipped with a 110 mm (PA) lift-bag.

s,

used during the Danish seine experiments May 1986, when using the "twin codend method". (1: diamond mesh, 2: square mesh codend).

R B LARGEN: A REVIEW ON THE APPLIDATION AND SELECTIVITY OF SQUARE MESH METTING IN THE CODEND OF TRAVELS & SEINES.

RESULTS

Cod travl:

catches during the experimental period are explained by short tovhigher percentage of red fish (Sebastes marinus). small, seldom exceeding 1 tonn per towing. Apart from cod, saithe ing time and extremely short bridle lengths (45 m). Throughout the test period (March 1988), the catches were rather (Pollachius virens) and haddock, the catches vere mixed up with a Rather small

selectivity between the two different codends (square and diamond meahea). tions during the day (and night), complicated the comparisons of Using the "alternate haul method", change of the species composi-

big differences between the codends with respect to selectivity. i.e. 42 cm and 39 cm respectively, it was difficult to find the interest, cod and haddock, were close to the legal minimum size, As the lover part of the size distributions of the two species of

tivity on the smaller fish (size range 35 - 45 cm) when using the in Fig. 5 and Fig. 6, however, indicates a slightly better selec-The relative length distributions comparing the two codends given 120 mm square mesh codend.

very few of them masked the square mesh netting. In total no more codend were seen. In spite of relatively high numbers of red fish, than 3 - 5 cod and haddock per haul were seen to mask the square During these experiments no problems in handling the square mesh mesh netting in the codend.

wards and escaping through the square mesh netting in front of the codend. Some of these fishes were later seen to swim forwards the netting and directly into the rear, diamond meshed part section and through the small meshed funnel without seeking 9 m long square mesh part of the codend). The fish that did react, the diamond mesh section. hovever, front of the funnel or just behind the funnel. Most of the fish, vere seen to seek towards the netting and escaping either just in reacted upon the small meshed funnel (placed in the middle of the **u. v.** During the observation of fish reactions to the codend, using the vehicle (summer 1988), revealed that only a few of the fish vere svimming almost directly through the square meshed of 6

Foreløbige resultater for snurrevad

DEL I:

FORELØPIGE RESULTATER, SNURREVAD ØST-FINNMARK, 17. TIL 22. JUNI 1991

FORSØK MED M/S "HEIDI ANITA" T-100-T 135 mm PE poser versus 55 mm sorteringsrist

> TOKTDELTAKERE: Bjørnar Isaksen, Roger Larsen, Svein Løkkeborg & Oddvar Chruickshank

KOMMENTARER TIL FORSØK MED SORTERINGSRIST I SNURREVAD, ØST-FINNMARK I JUNI 1991:

Fartøy, utstyr og fangstområde:

Forsøkene ble utført med snurrevadfartøyet M/S "Heidi Anita", som er 19.9 m lang, 6.4 m bred og har en 523 BHk Bos/Merzedes hovedmotor. Fartøyet er spesialrigget for effektivt snurrevadfiske. Begge tautromler er plassert på båtdekket (bak rorhuset) og fartøyet har 2 hiab-kraner for håndtering av bruk og fangst. Fangsten blir tatt ned på arbeidsdekket gjennom inntaksbinge fra båtdekket. Fisken blir sløyd for hånd, vasket og kjørt ned i CSW-tanker i rommet.

Under seleksjonsforsøkene ble det benyttet en standard Brd. Selstad tampenot (180 msk. x 300 mm) med tauvinger, og det ble i regelen gått ut 5 kveiler tau (à 120 fv) på hver arm. Forsøkene ble utført i områdene øst av Makkaur, nærmere bestemt ved Syltefjord-stauran og inne på Gambukta, på dybder mellom 30 og 50 fv. Under forsøksperioden gikk fisk (torsk og hyse) og beitet på sil (tobis). Det ble funnet torsk i størrelsene 25 til 80 cm, med hovedtyngden på undermåls fisk. Hyse ble funnet i størrelsene 25 til 68 cm, størstedelen under minstemål. I enkelte hal med standard snurrevad og 135 mm PE pose (under RCTV-observasjoner) var innblandingsprosenten av undermåls fisk på disse feltene 70-90%!

Seleksjonsforsøk med 55 mm sorteringsrist:

I fremste del (ca. 10 m foran cod-end) av den ordinære 135 mm PE posen ble det montert inn 3 stk. 70 x 70 cm rister av rustfritt stål (ST 18.8) med 55 mm spileavstand. Tilsammen 12 stk. 8" PL-kuler ble brukt for å nøytralisere vekten av ristene, plassert på en slik måte at ristene fikk en viss angrepsvinkel.

For å fange opp fisk som ble sortert ut gjennom ristene ble det benyttet en finmasket oppsamlingspose, kfr. skisse av forsøksoppsettet. Det ble ikke gjort "blinding" av hovedsekken.

Håndtering og praktiske erfaringer:

Det ble under disse forsøkene ikke avdekket vansker med håndtering av utstyret, selv om det ble brukt en stor oppsamlingspose. Praksis for utsetting og haling ble gjort identisk med vanlig, ordinært fiske, men det ble naturligvis sørget for at pose med rister og oppsamlingspose gikk riktig ut. Når avstand mellom ristseksjonen og codend var riktig, oppstod det ikke problemer med "tørking" og tømming av sekkene. I alle tre seleksjonshalene var det 4-5 sekker fisk i oppsamlingsposen og 2-4 sekker i hovedposen. "Heidi Anita" er et fartøy med høy hekk, og ventelig blir "vanskene" med å håndtere sorteringsrist i snurrevad enda mer uproblematisk (om mulig?) på et mindre fartøy hvor hekket er nærmere vannspeilet.

Resultater fra seleksjonsforsøkene:

Resultatene fra forsøkene er svært oppløftende, det er oppnådd meget stor grad av utsortering på yngel og undermåls fisk på tross av en "rimelig" middelseleksjon for torsk og hyse. Det er oppnådd skarp seleksjon med hensyn til fiskestørrelse, med seleksjonsintervall på henholdsvis 5.2 cm og 5.1 cm for torsk og hyse.

Det kan ikke trekkes noen konklusjoner eller gis noen anbefalinger ut fra dette materialet!. Årsaken til dette ligger i at det er gjort kun tre hal, og at det ikke ble benyttet finmasket innernett i hovedposen. Dermed er eventuell maskeseleksjon i hovedposen ikke kontrollert. Det nærmeste vi kan komme et svar på dette i denne omgang, er gjennom sammenligningen mellom hal 12 og hal 14 beskrevet i det understående.

Det er gjort en sammenligning, gjennom kumulert prosent-fordeling, av resultatene fra snurrevad med ordinær 135 mm PE pose (hal 12) og snurrevad med 55 mm sorteringsrist, hvor effektene av sorteringsristen kommer klart til uttrykk.

Sluttord:

Gjennom disse innledende forsøk til utvikling av en sorteringsrist for snurrevad ble det oppnådd resultater og erfaringer langt over det forventede. Ideen bak forsøket var i hovedsak å få svar på den praktiske siden ved håndtering av rister og oppsamlingspose på et snurrevadfartøy. Dette forklarer hvorfor forsøkene ikke ble lagt opp som kontrollerte forsøk med "blindet" hovedsekk.

På tross av dette, så er det allerede nå helt tydelig at sorteringsristen vil kunne fungere svært godt i snurrevad. Forskjellene mellom fangstsammensetningen i et snurrevadhal med ordinær pose (135 mm PE) sammenlignet med et snurrevadhal hvor det brukes sorteringsrist + 135 mm PE pose, er som dag og natt.

Tromsø, den 21.09.1991

Bjørnar Isaksen & Roger B. Larsen

VEDLEGG:

Lengde-frekvens fordeling for torsk 55 mm sorteringrist hal 13+14+15 M/S "Heidi Anita" T-100-T, 21. Juni 1991

Isaksen & Larsen 1991

Seleksjonskurve for torsk hal 13-15 55 mm sorteringsrist ^{M/S *Heidi Anita* T-100-T, 21. Juni 1991}

Isaksen & Larsen 1991

Seleksjonskurve for hyse hal 13-15

Lengde-frekvens fordeling for hyse 55 mm sorteringrist hal 13+14+15 M/S "Heidi Anita" T-100-T Juni 1991

Isaksen & Larsen 1991

Seleksjonskurve for torsk hal 13 55 mm sorteringsrist ^{M/S "Heidi Anita" T-100-T Juni 1991}

Lengde-frekvens fordeling for torsk 55 mm sorteringrist hal 13 ^{M/S "Heidi Anita"} T-100-T Juni 1991

Seleksjonskurve for torsk hal 14 55 mm sorteringsrist ^{M/S "Heidi Anita" T-100-T Juni 1991}

Lengde-frekvens fordeling for torsk 55 mm sorteringrist hal 14 ^{M/S "Heidi Anita" T-100-T Juni 1991}

Seleksjonskurve for torsk hal 15 55 mm sorteringsrist ^{M/S} "Heidi Anita" T-100-T Juni 1991

Lengde-frekvens fordeling for torsk 55 mm sorteringrist hal 15 M/S "Heidi Anita" T-100-T Juni 1991

Seleksjonskurve for hyse hal 13 55 mm sorteringsrist M/S "Heidi Anita" T-100-T Juni 1991

Lengde-frekvens fordeling for hyse 55 mm sorteringrist hal 13 ^{M/S "Heidi Anita" T-100-T Juni 1991}

Seleksjonskurve for hyse hal 14 55 mm sorteringsrist ^{M/S "Heidi Anita" T-100-T Juni 1991}

Lengde-frekvens fordeling for hyse 55 mm sorteringrist hal 14 M/S "Heidi Anita" T-100-T Juni 1991

Seleksjonskurve for hyse hal 15 55 mm sorteringsrist ^{M/S "Heidi Anita" T-100-T Juni 1991}

Lengde-frekvens fordeling for hyse 55 mm sorteringrist hal 15 M/S "Heidi Anita" T-100-T Juni 1991

Størrelses-fordeling for torsk Snurrevad med 55 mm sort.rist, hal 13-15 MS "Heidi Anita" T-100-T 21. Juni 1991

Størrelses-fordeling for hyse Snurrevad med 55 mm sort.rist, hal 13-15 ^{M/S "Heidi Anita" T-100-T, 21. Juni 1991}

Isaksen & Larsen 1991

The physical impact of trawl gears
trawl gears. The physical impact of science marinescotland

Barry O'Neill and Keith Summerbell

on the sea bed The impact of towed fishing gears

- Physical processes
- Hydrodynamic
- sediment mobilisation
- Geotechnical
- Penetration into the seabed
- Forces acting on the seabed

Sediment mobilisation

the gear component Sediment put into water column related to the hydrodynamic drag of

Sediment mobilisation

marine scotland

- The greater the drag the greater the amount of sediment mobilised
- the finer the sediment type the greater the amount mobilised

marine scotland science

- sea trials Alba na Mara 3 -14 October
- Gear components on a towed sledge
- Measuring
- suspension of sediment behind gear

components

- drag forces
- Investigate relationship between drag

and mobilised sediment

Towing faster more sediment mobilised

Weight and penetration does not influence quantity of sediment mobilised

- Not touching the sea bed (tied up)
- Hydrodynamic only
- Three different weights
- ~ 60, 120, 180kg
- Hydrodynamic and geotechnical
- Range of speeds

~ $1 - 2 \text{ ms}^{-1}$

Fixed and rolling

Weights

strlgieW

- sediment in wake and drag

- Not touching the sea bed (tied up)
- Hydrodynamic drag
- Touching the sea bed
- ~ 60, 120, 180kg
- Combined hydrodynamic and geotechnical drag
- Sediment in the water column
- plume Relate hydrodynamic drag to sediment in the
- Relate geotechnical drag to weight

Hydrodynamics and mobilisation of sediment

Hydrodynamic drag

- 10 sec averaged measurements
- -Speeds 1 2 ms⁻¹
- -8 configurations for cylindrical block
- –3 configurations for spaced disks
- -3 configurations for rectangular doors

Hydrodynamic drag vs speed

Hydrodynamic drag

$$D = 0.5\rho C_{d}AU^{4}$$

$$D = 0.5\rho C_{a}A_{d}U^{2} + 0.5\rho C_{axel}A_{axel}U^{2}$$

Hydro drag vs speed cylindrical blocks

Hydrodynamic drag

- engineering literature Drag coefficient values very similar to what is in the
- Confidence in assumptions made in previous studies
- Confidence in methodology and load cells

Hydrodynamics and mobilisation of sediment

marine scotland science

LISST 100X

- Particle size analyser
- Laser diffraction principle
- Volume concentration of 32 particle size bins between
 2.5 and 500 microns
- In situ readings @ 1Hz

Hydrodynamics and mobilisation of sediment

marine scotland science

The greater the hydrodynamic drag the greater the amount of sediment mobilised

Weight and penetration does not influence quantity of sediment Mobilised

Weights ~ 60, 120 and 180kg Speeds ~ $1 - 2 \text{ ms}^{-1}$

Hydrodynamics and mobilisation of sediment

marine scotland science

Concentration vs hydro drag

Geotechnical drag

science marinescotland

Drag = geotechniclal drag + hydrodynamic drag

Weights \sim 60, 120 and 180kg

- Speeds 1 2 ms⁻¹
- 8 configurations for cylindrical block
- 3 configurations for spaced disks
- 3 configurations for rectangular doors
- Fixed and rolling

Geotechnical drag

science marinescotland

But perhaps not for thinner fixed disks

2 dimensional

- geotechnical drag per unit area ~ weight per unit area Secondary effect related to towing speed (but maybe only for fixed heavier components)
- Differences between rolling and fixed components
- dimensional For rolling cylinders geotechnical processes are 2

Appendix A16

Simulating the Physical Behaviour of Seine Ropes for Evaluating Fish Herding Properties of Danish Seines

Ropes for Evaluating Fish Herding Properties Simulating the Physical Behaviour of Seine of Danish Seines

FTFB, New Bedford, 2014

SINTEF Fisheries and Aquaculture, Fishing Gear Technology Nina A H Madsen[,] Karl Gunnar Aarsæther, Bent Herrmann

Project

- **Danish Seine Fishing** A national Norwegian three year research project to develop a simulation model for
- 2013-2015
- Physical modelling/simulation of gear behaviour
- Simulation and prediction of size selection
- Research Fund (FHF) Funded by Research Council of Norway (RCN) and Fisheries and Norwegian Seafood
- Larsen) The project Is led by SINTEF and with University of Tromsø as partner (Roger B.
- The project uses knowledge from international experts

ω

() SINTEF

stages of the fishing process net between the wing tips to ensure they ends up entering the net during the later

- An important function of the seine ropes is to herd the fish into the path of the seine
- - The wings of the seine will gradually change geometry during the fishing process

- beginning to winch in the two seine ropes The boat will then return to the buoy. The boat typically moves forward with a speed of upto 2 knots while simultaneously

The warps are laid out on the seabed to encircle the targeted fish population

The boat will set a buoy, lays out the first warp, the net and then the second warp.

A Danish Seine is an active fishing gear **VET** " WARP 11,1 BLOY

Danish Seine Fishing

consisting of two long warps

(seine ropes) and a fishing net

The wings on the net is typically larger than on a bottom trawl net.

Fishing Procedure

Seine Ropes and Fish Herding

- The seine ropes(warps) are important since they are sweeping the bottom and mainly responsible for herding the fish in to the path of the seine net
- The fish will react to the approaching warp by swimming perpendicular to the warp
- efficiency during the fishing process The movement (shape and speed) of the warps are important for the herding
- Too fast and the fish might be overrun by the warp
- Too slow and the fish might find the warp not to be so scary after all?
- haddock in establishing a model for herding fish We are going to use experimental data from Norwegian trawl fishing, cod and
- Additionally we have sweep herding data from trawl on Plaice and Flounders.
- More information /data is welcome from anyone !

Technology for a better society

Demonstration

7

Simulation Work Flow

- Vary one description, compare the results
- Effect of gear design

Simulation Work Flow

Effect of gear design

Vary one description, compare the results

9

Fishing Gear Description Description **Simulation Tool** Simulation Result

Simulation Work Flow

 Experimentation by simulation

L127132

Fishing Operation

Environment Description

ishing Gear	Operation	Environment	Result
	а	e	Aae
3	a	e	Bae
	а	e	Cae
4	b	e	Abe
A	С	e	Ace

Development Strategy of the Project

- First building a simple model
- Improve it bit by bit an iterative incremental development approach
- **Simulation Model Creation Process**
- Model a setup
- Compare the setup to experimental data or other simulations
- Go back and improve the model

Physical Modelling of Danish Seine Rope Behaviour

- throughout the process The gear geometry is determined by the seine ropes
- A physical model is required to demonstrate and predict the effects of
- Changes to fishing operations better results with existing gear
- Changes in gear properties better results with modified gear
- Seine ropes in use range from 700m combination ropes to 3000m, diameter 36mm to 60mm
- without changes to model description and usage replace models in use with more complex models Iterative development of seine rope models
- modeling Complex models provides a more realistic physical

9 SINTEF

Winching of discrete cable model

- of these forces The behavior is determined by the local balance
- Discretization of the rope structure
- torces

The cables moves through water and in structure must be accounted for Forces on Danish Seine ropes

Seine ropes are slender and flexible structures

Viscous forces dominate, deformation of

- contact with the seabed
- External forces on ropes
- Gravity/buoyancy
- Hydrodynamic lift/drag and added mass
- Friction/contact forces with seabed
- Internal forces in ropes balance external
- **~**≡∨ *

Thank you for listening

We welcome comments, questions and even possible data for use in our studies

Appendix A17

Understanding and predicting size selection of cod (Gadus morhua) in square-mesh codends for Danish Seining: a simulation-based approach

codends for Danish Seining: a simulationof cod (Gadus morhua) in square-mesh Understanding and predicting size selection based approach

Bent Herrmann, Roger B. Larsen (UIT), Bjørnar Isaksen (IMR), Manu Sistiaga, Nina Madsen, Karl G. Aarsæther

9 SINTEF

Background

exploitation of the cod and haddock resources. selectivity in this type of active fishing gear is therefore of importance for managing the haddock (Melanogrammus aeglefinus) in Norwegian fisheries. Knowledge about size Danish Seining is an important active fishing method to harvest cod (Gadus morhua) and

species in the square mesh codends mostly applied in this fishery. However very limited scientific published data exists on the size selection of target

ω

9 SINTEF

fishing process.

stages of the fishing process. The wings of seine will gradually change geometry during the seine net between the wing tips to ensure they ends up entering the net during the later seine ropes. An important function of the seine ropes is to herd the fish into the path of the seabed to encircle the fish population targeted. After the vessel have returned to the buoy forward with a speed of about 2 knots while simultaneously beginning to winch in the two marking where the first part of the first seine rope was laid out the vessel typically moves Two long seine ropes (warps) which are connect to the wing tips of the seine is laid out on the

Focus on Cod selectivity in Danish Seine codends

- both tonnes landed and in value. Therefore this study focus on cod Cod is the most important species in the Norwegian whitefish fishery when measured in
- Around 20% of the Norwegian cod quota is caught using Danish seines
- The target size for cod in the fishery
- is sizes from 44 cm. The codends applied should therefore have low retention probability for sizes below

The Danish seine fishing process

Codend design For the Norwegian Danish seine fishing north of 64^o it is mandatory to use a square

mesh codends in specific areas (mesh size minimum 125 mm).

- tension to what would be the situation with a diamond mesh codend under longitudinal provide better escapement options along the entire length of the codend compared The background for requiring a square mesh codend for the Danish seine fishing is to
- select out the small fish in the Norwegian Danish seine fishery for cod and the size codend selection is therefore solely dependent on the size selection in the square mesh Contrary to for the bottom trawl fishery it is not mandatory to use a sorting grid to trawling since the fish typically spent far less time in the back part of the codend. escapement options along the entire codend length compared to with bottom This is believed to be particular important for the Danish seine fishing with

- Clear that many meshes are only partly open.
- distort at least tensionless mesh bars during attempts to escape.
 - Recordings also indicate that at least some fish seem to be able to

Selectivity at depth

From underwater recordings it is evident that many fish do escape through the fully

or partly open codend square meshes prior to the codend reach the surface.

ഗ

Sacking up and Codend size selection

- The way the catch is recovered to the fishing vessel in Norwegian Danish seine fishing differs considerable from in the trawl fishery.
- A common used method is called "sacking up" and consists of that about 500-1000 kg catch at the time is released to the front part of the codend with diamond meshes which is lifted on board while the rest of the codend remain in surface with slack square meshes.
- Dependent on the amount of catch a fishing process can involve several sacking up operations while the rest of the codend remain at the surface with the remaining fish in the catch surrounded by tensionless square meshes.
- The fish lift of diamond mesh netting may also contribute to the size selection when the fish are released into to this during the catch recovery.

Using FISHSELECT methodology and data

- selective potential of the square mesh codends including the diamond mesh fish lift. We applied the fish morphology based simulation method FISHSELECT to investigate the
- in an active fishing gear. Through computer or not a fish is able to penetrate a certain mesh and software developed to determine whether FISHSELECT is a framework of methods, tools,

Prediction of selectivity from morphological conditions: Methodology and a case study on cod (*Gadus morhua*)

Bent Herrmann¹, Ludvig A. Krag*¹, Rikke P. Frandsen, Niels Madsen, Bo Lundgren, Karl-Johan Stæhr

the former and the shape and size of the latter. for a certain species and selection device by comparing the morphological characteristics of simulation, FISHSELECT (Herrmann et al. 2009) enables the estimation of the size selectivity

For this study we used FISHSELECT data collected during experimental trawl fishery in the Barents Sea and morphological models based on analysis of these data.
 These data and models are described in Sistiaga et al. 2011.

Canadian Journal of Fisheries and Aquatic Sciences, 2011, Vol. 68, No. 5 ; pp. 927

Understanding limits to cod and haddock separation using size selectivity in a multispecies trawl fishery: an application of FISHSELECT

Manu Sistiaga, Bent Herrmann, Kåre N. Nielsen, Roger B. Larser (dol: 10.1139/t2011-017)

9 SINTEF

7

Different mesh states considered in simulations

attempt to escape through: simulation different scenario's regarding the distortability of mesh shapes when cod shape and tension states during the Danish Seine fishing process we consider for the Due to the observations that the fish will experience codend meshes with different

Soft/slack mesh model

fish cross section The fish can fully distort the mesh shape to take shape after the

I. Semi soft square mesh model

tensionless mesh bars outwards For partly open square meshes the fish can distort the

square mesh codends) (model also applied in Krag et al. (2011) for study of selectivity of haddock in trawl

Size selection of haddock (*Melanogrammus aeglefinus*) in square mesh codends: A study based on assessment of decisive morphology for mesh penetration

Ludvig A. Krag*,¹, Bent Herrmann¹, Niels Madsen, Rikke P. Frandsen

III. Stiff mesh model

tension or without tension in The fish cannot distort the mesh shape at all neither bars with

 ∞

ە

() SINTEF

atter selection.

square meshes are fully open to avoid risking catching undersized cod

If the cod are not able distort even tensionless mesh bars (stiff mesh) then it is necessary that the

Semi soft mesh selectivity can if optimal open result in release of cod well above minimum target size.

Soft/slack mesh selectivity if occurring could potentially mean release of cod far above the target limit.

But it need to be at least 70% open to avoid retaining some undersized cod

- The selective potential in the bigger mesh size fish lift can if slack/soft or well open result in potential

Target size limit at 44 cm **Retention probability** 0.25 0.75 0.5 0 50 125 mm Section min. Square mesh 44 505 S Length (cm) **L**95 65 min. 130 mm fish lift section Diamond mesh 70 Cod size (cm) Selective potential vs mesh openness and distortion mode 45 50 80 щ 40 ភូ 6 5 20 Soft 100 % 50 % 100 % 90 Semi sott openness Square 125 mm 18 12 60 1 5 100 90 Stiff openness 8 50 % 50 Soft Diamond 130 mm 100 90 80 100 % openness Stiff 50 % 12

Prediction of Selective potential for the current codend design

Experimental results from historical codend

- Paired gear data from Isaksen and Larsen (1988)
- Square 120 mm
- Thin and flexible twine construction (thinner and more flexible than applied today)
- Fish lift diamond 110 mm
- Trouser gear data (control 60 mm mesh size)
- Few hauls conducted.
 Re-analysed to obtain
- confidence limite:

L15

L05 L10

		L20	
		L25	
		L30	
L50	57.33 (54.52 - 85.65)	L35	
SR	6.61 (5.37 - 32.43)	L40	
$1/\delta$	$0.0231 \ (0.0193 - 100)$	L45	
SP	0.500 (0.4044 - 0.8603)	L55	
P-Value	0.5889	L60	
Deviance	3.73	L65	
DOF	S	L70	
		L75	

61.21 (58.71 - 137.68) 60.52 (57.83 - 116.91) 60.16 (57.49 - 110.38) 59.77 (57.10 - 105.58) 60.87 (58.36 - 123.78) 59.35 (56.58 - 100.56) 47.65 (44.14 - 59.44) 58.91 (56.11 - 96.15) 58.43 (55.61 - 92.29) 57.90 (55.08 - 88.87) 55.18 (52.34 - 76.61) 54.26 (51.30 - 73.61) 53.16 (50.09 - 70.31) 51.82 (48.69 - 66.80) 50.09 (46.88 - 63.69) 43.48 (39.44 - 53.66) 56.70 (53.85 - 82.57) 55.99 (53.18 - 79.57)

L80 L85 L90 L95

Technology for a better society 10

We investigated different scenario's regarding the fish ability to distort the meshes:

thereby learn something about size selection of cod in Danish seine codends based on

Can we understand the historical data based on the different mesh states models and

not (stiff), partly (semi soft), fully (soft) or combinations of these

square mesh selection?

Ability to replicate experimental results for different mesh states scenario's

Conclusion/Discussion

- what would be the survival rate of those fish. historical gear – could speculate when during the fishing process this may occur and Soft/slack mesh escapement seem to play a big role for the selection process in the
- designs applied today. be questioned if soft/slack mesh escapement will play any significant role for the The current applied codends are made of stiffer and thicker twine and it can therefore
- Would be beneficial with experimental results for designs made of currently applied codend materials since this would enable predictions for this type of contructions
- % open. release of all cod below the target sizes (44 cm) if the codend meshes are at least 70 open square meshes (semi soft escapement) then the current applied design support However if cod can as indicated from underwater recordings distort tensionless partly
- current design to be fully open to release all undersized cod through the square meshes of the If the cod cannot distort the meshes at all (stiff mesh) then the codend meshes needs
- Bigger mesh size in the fish lift than for the square meshes may potentially lead to late escapement of some cod if these meshes are slack or well open.

<u>Work funded by:</u> Research Council of Norway and Norwegian Seafood Research Fund

